Skip to main content

Abstract

Insects are ectothermic organisms, and as such their physiological, metabolic, and developmental processes are highly responsive to ambient temperatures. In a volume dealing with the effects of low temperatures on insects, inclusion of a chapter on thermoperiodic effects is quite appropriate, because it is the low-temperature phase of the thermoperiod that appears to play the major role in determining the insect’s response (Danilevskii, 1961; Beck, 1983a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, A. W. and R. F. Harwood, 1966. Cold tolerance in adult female Culex tarsalis (Coquillet). Mosquito News 26:1–7.

    Google Scholar 

  • Andrewartha, H. G. 1952. Diapause in relation to the ecology of insects. Biol. Rev. 27:50–107.

    Article  Google Scholar 

  • Apple, J. W. 1967. Phenology of black cutworm in southern Wisconsin. Proc. No. Centr. Br. Entomol. Soc. Amr. 22:86–89.

    Google Scholar 

  • Bares, D. and A. C. Hodson. 1956. Low temperature tolerance of the European corn borer in relation to winter survival in Minnesota. J. Econ. Entomol. 49:19–24.

    Google Scholar 

  • Baust, J. G. 1982. Environmental triggers to cold hardening. Comp. Biochem. Physiol. 73:563–570.

    Article  Google Scholar 

  • Baust, J. G. and R. E. Lee. 1982. Environmental triggers to cryoprotectant modulation in separate populations of the gall fly Eurosta soldaginis (Fitch). J. Insect Physiol. 28:431–436.

    Article  Google Scholar 

  • Baust, J. G. and L. K. Miller. 1970. Variations in glycerol content and its influence on cold hardiness in the Alaskan carabid beetle Pterostichus brevicornis. J. Insect Physiol. 16:979–990.

    Article  Google Scholar 

  • Beck, S. D. 1950. Nutrition of the European corn borer, Pyrausta nubilalis (Hübn). II. Some effects of diet on larval growth characteristics. Physiol. Zool. 23:353–361.

    Google Scholar 

  • Beck, S. D. 1962a. Temperature effects on insects: relation to periodism. Proc. No. Centr. Br. Entomol. Soc. Am. 17:18–19.

    Google Scholar 

  • Beck, S. D. 1962b. Photoperiodic induction of diapause in an insect. Biol. Bull. 122:1–12.

    Article  Google Scholar 

  • Beck, S. D. 1967. Water intake and the termination of diapause in the European corn borer, Ostrinia nubilalis, J. Insect Physiol. 13:739–750. Beck, S. D. 1968. Environmental photoperiod and the programming of insect development. In Evolution and Environment, ed. E. T. Drake, pp. 279–296. Yale Univ. Press, New Haven.

    Google Scholar 

  • Beck, S. D. 1977. Dual system theory of the biological clock: effects of photoperiod, temperature, and thermoperiod on the determination of diapause. J. Insect Physiol. 23:1363–1372.

    Article  Google Scholar 

  • Beck, S. D. 1980. Insect Photoperiodism, 2nd ed. Academic Press, New York.

    Google Scholar 

  • Beck, S. D. 1982. Thermoperiodic induction of larval diapause in the European corn borer, Ostrinia nubilalis. J. Insect Physiol. 28:273–277.

    Article  Google Scholar 

  • Beck, S. D. 1983a. Insect Thermoperiodism. Annu. Rev. Entomol. 28:91–108.

    Article  Google Scholar 

  • Beck, S. D. 1983b. Thermal and thermoperiodic effects on larval development and diapause in the European corn borer, Ostrinia nubilalis. J. Insect Physiol. 29:107–112.

    Article  Google Scholar 

  • Beck, S. D. 1984. Effect of temperature on thermoperiodic determination of diapause. J. Insect Physiol. 30:383–386.

    Article  Google Scholar 

  • Beck, S. D. 1985. Effects of thermoperiod on photoperiodic determination of diapause in Ostrinia nubilalis. J. Insect Physiol. 31:41–46.

    Article  Google Scholar 

  • Beck, S. D. 1986. Effects of photoperiod and thermoperiod on growth of Agrotis ipsilon (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 79:821–828.

    Google Scholar 

  • Beck, S. D. 1987. Thermoperiod-photoperiod interactions in the determination of diapause in Ostrinia nubilalis. J. Insect Physiol. 33:707–712.

    Article  Google Scholar 

  • Beck, S. D. 1988a. Thermoperiod and larval development of Agrotis ipsilon (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 81:831–835.

    Google Scholar 

  • Beck, S. D. 1988b. Cold acclimation of Agrotis ipsilon (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 81:964–968.

    Google Scholar 

  • Beck, S. D. and W. Hanec. 1960. Diapause in the European corn borer, Pyrausta nubilalis (Hübn.). J. Insect Physiol. 4:304–318.

    Article  Google Scholar 

  • Benschoter, C. A. 1968. Influence of light manipulation on diapause of Heliothis zea and H. virescens. Ann. Entomol. Soc. Am. 61:1272–1274.

    Google Scholar 

  • Bowen, M. F. and S.D. Skopik. 1976. Insect photoperiodism: the “T” experiment as evidence for an hourglass mechanism. Science 192:59–60.

    Article  Google Scholar 

  • Bradshaw, W. E. 1980. Thermoperiodism and the thermal environment of the pitcher plant mosquito, Wyeomyia smithii. Oecologia 46:13–17.

    Article  Google Scholar 

  • Butler, G. D. and J. D. Lopez. 1980. Trichogramma pretiosum: development in relation to constant and fluctuating temperatures. Ann. Entomol. Soc. Am. 73:671–673.

    Google Scholar 

  • Carey, J. R. and C. C. Beegle. 1975. Black cutworm overwintering investigations in infested greenhouses. Proc. No. Centr. Br. Entomol. Soc. Am. 30:59–64.

    Google Scholar 

  • Champlain, R. A. and G. D. Butler. 1967. Temperature effects on the development of the egg and nymphal stages of Lygus hesperus (Hemiptera: Miridae). Ann. Entomol. Soc. Am. 60:519–521.

    Google Scholar 

  • Chandrashekaran, M. K. 1974. Phase shifts in the Drosophila pseudoobscura circadian rhythm evoked by temperature pulses of varying durations. J. Interdis. Cycle Res. 5:371–380.

    Article  Google Scholar 

  • Chen, C-P., D. L. Denlinger, and R. E. Lee. 1987. Responses of nondiapausing flesh flies (Diptera: Sarcophagidae) to low rearing temperatures: developmental rate, cold tolerance, and glycerol concentrations. Ann. Entomol. Soc. Am. 80:790–796.

    Google Scholar 

  • Chippendale, G. M., A. S. Reddy, and C. L. Catt. 1976. Photoperiodic and thermoperiodic interaction in the regulation of the larval diapause of Diatraea grandiosella. J. Insect Physiol. 22:823–828.

    Article  Google Scholar 

  • Danilevskii, A. S. 1961. Photoperiodism and Seasonal Development of Insects, English translation, 1965 Oliver and Boyd, London.

    Google Scholar 

  • Delisle, J. and J. N. McNeil. 1987. Calling behaviour and pheromone titre of the true armyworm, Pseudaletia unipuncta (Haw.) (Lepidoptera: Noctuidae), under different temperature and photoperiodic conditions. J. Insect Physiol. 33:315–324.

    Article  Google Scholar 

  • Dreisig, H. and E. T. Nielsen. 1971. Circadian rhythm of locomotion and its temperature dependence in Blattella germanica. J. Exp. Biol. 54:187–198.

    Google Scholar 

  • Dumortier, B. and J. Brunnarius. 1977a. L’information thermoperiodique et l’induction de la diapause chez Pieris brassicae L. C. R. Acad. Sci. Paris 284:957–960.

    Google Scholar 

  • Dumortier, B. and J. Brunnarius. 1977b. Existance d’une composante circadienne dans l’induction thermoperiodique da la diapause chez Pieris brassicae L. C. R. Acad. Sci. Paris 285:361–364.

    Google Scholar 

  • Gangavalli, R. R. and M. T. Aliniazee. 1985. Diapause induction in the oblique-banded leafroller Choristoneura rosaceana (Lepidoptera: Tortricidae): role of photoperiod and temperature. J. Insect Physiol. 31:831–835.

    Article  Google Scholar 

  • Gerber, G. H. and M. A. Howlader. 1987. The effects of photoperiod and temperature on calling behaviour and egg development of the bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae). J. Insect Physiol. 33:429–436.

    Article  Google Scholar 

  • Gorsuch, C. S., M. G. Karandinos, and C. F. Koval. 1975. Daily rhythm of Synanthedon pictipes (Lepidoptera: Aegeriidae) female calling behavior in Wisconsin: temperature effects. Entomol. Exp. Appl. 18:367–376.

    Article  Google Scholar 

  • Greenfield, M. D. and M. G. Karandinos. 1976. Oviposition rhythm of Synanthedon pictipes under a 16:8 L:D photoperiod and various temperatures. Environ. Entomol. 5:712–713.

    Google Scholar 

  • Hagstrum, D. W. and W. R. Hagstrum. 1970. A simple device for producing fluctuating temperatures, with an explanation of the ecological significance of fluctuating temperatures. Ann. Entomol. Soc. Am. 63:1385–1389.

    Google Scholar 

  • Hagstrum, D. W. and C. E. Leach. 1973. Role of constant and fluctuating temperatures in determining development time and fecundity of three species of stored-products Coleoptera. Ann. Entomol. Soc. Am. 66:407–410.

    Google Scholar 

  • Hagstrum, D. W. and C. F. Tomblin. 1973. Oviposition by the almond moth, Cadra cautella, in response to falling temperature and onset of darkness. Ann. Entomol. Soc. Am. 66:809–812.

    Google Scholar 

  • Hanec, W. and S. D. Beck. 1960. Cold hardiness in the European corn borer, Pyrausta nubilalis (Hübn). J. Insect Physiol. 5:169–180.

    Article  Google Scholar 

  • Hodson, A. C. and M. A. Al Rawy. 1958. Temperature in relation to developmental thresholds of insects. Proc. 10th Int. Cong. Entomol. 2:61–65.

    Google Scholar 

  • Horwath, K. L. and J. G. Duman. 1982. Involvement of the circadian system in photoperiodic regulation of insect antifreeze proteins. J. Exp. Zool. 219:267–270.

    Article  Google Scholar 

  • Horwath, K. L. and J. G. Duman. 1983. Photoperiodic and thermal regulation of antifreeze protein levels in the beetle Dendroides canadensis. J. Insect Physiol. 29:907–917.

    Article  Google Scholar 

  • Horwath, K. L. and J. G. Duman. 1984. Further studies on the involvement of the circadian system in photoperiodic control of antifreeze protein production in the beetle Dendroides canadensis. J. Insect Physiol. 30:947–955.

    Article  Google Scholar 

  • Horwath, K. L. and J. G. Duman. 1986. Thermoperiodic involvement in antifreeze protein production in the cold hardy beetle Dendroides canadensis: implications for photoperiodic time measurment. J. Insect Physiol. 32:799–806.

    Article  Google Scholar 

  • Howe, R. W. 1967. Temperature effects on embryonic development in insects. Ann. Rev. Entomol. 12:15–42.

    Article  Google Scholar 

  • Lees, A. D. 1955. The Physiology of Diapause in Arthropods. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lees, A. D. 1986. Some effects of temperature on the hour glass photoperiodic timer in the aphid Megoura viciae. J. Insect Physiol. 32:79–89.

    Article  Google Scholar 

  • Lees, A. D. 1987. The behaviour and coupling of the photoreceptor and hourglass timer at low temperature in the aphid Megoura viciae. J. Insect Physiol. 33:885–891.

    Article  Google Scholar 

  • Lin, A., A. C. Hodson, and A. G. Richards. 1954. An analysis of threshold temperatures for the development of Oncopeltus and Tribolium eggs. Physiol. Zool. 27:287–311.

    Google Scholar 

  • Loughner, G. E. 1972. Mating behavior of the European corn borer, Ostrinia nubilalis, as influenced by photoperiod and thermoperiod. Ann. Entomol. Soc. Am. 65:1016–1019.

    Google Scholar 

  • Masaki, S. and S. Kikukawa. 1981. The diapause clock in a moth: response to temperature signals. In Biological Clocks in Seasonal Reproductive Cycles, pp. 101–112. eds. B. K. Follett and D. E. Follett, Wright, Bristol.

    Google Scholar 

  • Matsuura, H. and K. Miyashita. 1978. Response to photoperiod of Agrotis ipsilon in relation to overwintering. Jap. J. Appl. Entomol. Zool. 22:7–11.

    Article  Google Scholar 

  • Matteson, J. W. and G. C. Decker. 1965. Development of the European corn borer at controlled constant and variable temperatures. J. Econ. Entomol. 58:344–349.

    Google Scholar 

  • McLeod, D. G. R. and S. D. Beck. 1963. Photoperiodic termination of diapause in an insect. Biol. Bull. 124:84–96.

    Article  Google Scholar 

  • Menaker, M. and G. Gross. 1965. Effect of fluctuating temperature on diapause induction in the pink bollworm. J. Insect Physiol. 11:911–914.

    Article  Google Scholar 

  • Messenger, P. S. 1964. The influence of rhythmically fluctuating temperatures on the development and reproduction of the spotted alfalfa aphid, Therioaphis maculata. J. Econ. Entomol. 57:71–76.

    Google Scholar 

  • Messenger, P. S. 1969. Bioclimatic studies of the aphid parasite Praon exsoletum. 2. Thermal limits to development and occurrence of diapause. Ann. Entomol. Soc. Am. 62:1026–1031.

    Google Scholar 

  • Neumann, D. and F. Heimbach. 1975. Das Wachstum des Kohl weisslings bei konstanten und tagesperiodisch wechselnden Temperaturen. Oecologia 20:135–141.

    Article  Google Scholar 

  • Nordin, J. H., Z. Cui, and C. M. Yin. 1984. Cold-induced glycerol accumulation by Ostrinia nubilalis larvae is developmentally regulated. J. Insect Physiol. 30:563–566.

    Article  Google Scholar 

  • Page, T. L. 1985. Circadian organization in cockroaches: effects of temperature cycles on locomotor activity. J. Insect Physiol. 31:235–242.

    Article  Google Scholar 

  • Pio, C. J. and J. G. Baust. 1988. Effects of temperature cycling on cryoprotectant profiles in the goldenrod gall fly, Eurosta solidaginis (Fitch). J. Insect Physiol. 34:767–771.

    Article  Google Scholar 

  • Pittendrigh, C. S. 1966. The circadian oscillation in Drosophila pseudoobscura pupae: a model for the biological clock. Z. Pflanzenphysiol. 54:275–307.

    Google Scholar 

  • Rence, B. G. 1984. A comparison of light and temperature entrainment: evidence for a multioscillator circadian system. Physiol. Entomol. 9:215–227.

    Article  Google Scholar 

  • Rence, B. G. and W. Loher. 1975. Arrhythmically singing crickets: thermoperiodic reentrainment after bilobectomy. Science 190:385–387.

    Article  Google Scholar 

  • Richards, A. G. 1957. Cumulative effects of optimum and suboptimum temperatures on insect development. In The Influences of Temperature on Biological Systems, pp. 145–162. American Physiological Society, Washington, DC.

    Google Scholar 

  • Richards, A. G. and S. Suanraksa. 1962. Energy expenditure during embryonic development under constant versus variable temperatures (Oncopeltus fasciatus (Dallas)). Entomol. Exp. Appl. 5:167–178.

    Article  Google Scholar 

  • Roberts, S. K. 1962. Circadian activity rhythms in cockroaches. II. Entrainment and phase setting. J. Cell. Com. Physiol. 59:175–186.

    Article  Google Scholar 

  • Rock, G. C. 1983. Thermoperiodic effects on the regulation of larval diapause in the tufted apple budworm (Lepidoptera: Tortricidae). Environ. Entomol. 12:1500–1503.

    Google Scholar 

  • Roush, R. T. and J. C. Schneider. 1985. Thermoperiod and photoperiod as temporal cues for adult eclosion of Heliothis virescens (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 78:514–517.

    Google Scholar 

  • Saunders, D. S. 1973. Thermoperiodic control of diapause in an insect: theory of internal coincidence. Science 181:358–360.

    Article  Google Scholar 

  • Saunders, D. S. 1984. Photoperiodic time measurement in Sarcophaga argyrostoma: an attempt to use daily temperature cycles to distinguish external from internal coincidence. J. Comp. Physiol. 154:789–794.

    Article  Google Scholar 

  • Scott, W. N. 1936. An experimental analysis of the factors governing the hour of emergence of adult insects from the pupae. Trans. R. Entomol. Soc. 85:303–329.

    Article  Google Scholar 

  • Siddiqui, W. H., C. A. Barlow, and P. A. Randolph. 1973. Effects of some constant and alternating temperatures on population growth of the pea aphid, Acyrthosiphonpisum (Homoptera: Aphididae). Can. Entomol. 105:145–156.

    Article  Google Scholar 

  • Skopik, S. D. and M. F. Bowen. 1976. Insect photoperiodism—hourglass measures photoperiodic time in Ostrinia nubilalis. J. Comp. Physiol. 111:249–259.

    Article  Google Scholar 

  • Story, R. N. and A. J. Keaster. 1982. The overwintering biology of the black cutworm, Agrotis ipsilon, in field cages (Lepidoptera: Noctuidae). J. Kansas Entomol. Soc. 55:621–624.

    Google Scholar 

  • Tauber, M. J., C. A. Tauber, and S. Masaki. 1986. Seasonal Adaptation of Insects. Oxford University Press, New York.

    Google Scholar 

  • Van Houten, Y. M., W. P. J. Overmeer, A. Q. Van Zon, and A. Veerman. 1988. Thermoperiodic induction of diapause in the predaceous mite, Amblyseius potentillae. J. Insect Physiol. 34:285–290.

    Article  Google Scholar 

  • Ward, J. V. and J. A. Stanford. 1982. Thermal responses in the evolutionary ecology of aquatic insects. Annu. Rev. Entomol. 27:97–117.

    Article  Google Scholar 

  • Welbers, P. 1975. Der Einfluss von tagesperiodischen Wechseltemperaturen bei der Motte Pectinophora. II. Der Sauerstoffverbrauch. Oecologia 21:43–56.

    Article  Google Scholar 

  • Went, F. W. 1959. The periodic aspect of photoperiodism and thermoperiodicity. In Photoperiodism and Related Phenomena in Plants and Animals, ed. R. B. Withrow, pp. 551–564. American Association Advancement of Science, Washington, DC.

    Google Scholar 

  • Wohlfahrt, T. A. 1967. Warme als potentieller Zeitgeber für das Schlupfen des Segeifalters Iphiclides podalirius (L.). Naturwiss. 54:121–122.

    Article  Google Scholar 

  • Yeargan, K. V. 1980. Effects of temperatures on developmental rate of Telenomus podisi (Hymenoptera: Scelionidae). Ann. Entomol. Soc. Am. 73:339–342.

    Google Scholar 

  • Zimmerman, W. F., C. S. Pittendrigh, and T. Pavlidis. 1968. Temperature compensation of the circadian oscillation in Drosophila pseudoobscura and its entrainment by temperature cycles. J. Insect Physiol. 14:669–684.

    Article  Google Scholar 

Download references

Authors

Editor information

Richard E. Lee Jr. David L. Denlinger

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Chapman and Hall

About this chapter

Cite this chapter

Beck, S.D. (1991). Thermoperiodism. In: Lee, R.E., Denlinger, D.L. (eds) Insects at Low Temperature. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0190-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0190-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0192-0

  • Online ISBN: 978-1-4757-0190-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics