Skip to main content

Cold Shock and Heat Shock

  • Chapter
Insects at Low Temperature

Abstract

Cold shock is the stress inflicted by a brief and rapid exposure to low, but nonfreezing, temperatures. When the shock is sufficiently severe, the organism sustains injury that may ultimately result in death. This form of stress has received little attention in insects, but it has been well recognized in bacteria, blue-green algae, yeasts, protozoans, higher plants, mammalian spermatozoa and embryos, and in cultures of plant and animal cells (review by Morris et al., 1983; Watson and Morris, 1987). Cold shock, also referred to as “direct chilling injury,” is dependent on the rate of cooling: greater injury is caused by more rapid cooling. The temperature threshold causing injury will vary between species and strains, but consistently this form of injury is observed in the absence of ice formation and at temperatures well above the supercooling point. The actual cause of injury elicited by cold shock remains elusive, but some form of membrane damage is likely. The normal integrity of the cell membrane may be altered by phase transitions of lipids within the membrane (Quinn, 1985) or by thermoelastic stress (McGrath, 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adedokun, T. A. and D. L. Denlinger. 1984. Cold-hardiness a component of the diapause syndrome in pupae of the flesh flies, Sarcophaga crassipalpis and S. Bullata. Physiol. Entomol. 9:361–364.

    Article  Google Scholar 

  • Ashburner, M. and J.J. Bonner. 1979. The induction of gene activity in Drosophila by heat shock. Cell 17:241–254.

    Article  Google Scholar 

  • Bultmann, H. 1986a. Heat shock responses in polytene food pad cells of Sarcophaga bullata. Chromosoma 93:347–357.

    Article  Google Scholar 

  • Bultmann, H. 1986b. Induction of a heat shock puff by hypoxia in polytene foot pad chromosomes of Sarcophaga bullata. Chromosoma 93:358–366.

    Article  Google Scholar 

  • Burton, V., H. K. Mitchell, P. Young, and N. S. Petersen. 1988. Heat shock protection against cold stress of Drosophila melanogaster. Mol. Cell. Biol. 8:3550–3552.

    Google Scholar 

  • Catelli, M. G., N. Binart, I. Jung-Testas, J. M. Renoir, E. E. Baulieu, J. R. Feramisco, and W. J. Welch. 1985. The common 90-kd protein component of non-transformed’85’ steroid receptors is a heat shock protein. EMBO J. 4:3131–3135.

    Google Scholar 

  • Chen, C.-P., D. L. Denlinger, and R. E. Lee, Jr. 1987a. Cold-shock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Physiol. Zool. 60:297–304.

    Google Scholar 

  • Chen, C.-P., D. L. Denlinger, and R. E. Lee, Jr. 1987b. Responses of nondiapausing flesh flies (Diptera: Sarcophagidae) to low rearing temperatures: developmental rate, cold tolerance, and glycerol concentrations. Ann. Entomol. Soc. Am. 80:790–796.

    Google Scholar 

  • Chen, C.-P., R. E. Lee, and D. L. Denlinger. 1990a. Cold shock and heat shock: a comparison of the protection generated by brief pretreatment at less severe temperatures. Physiol. Entomol. (in press).

    Google Scholar 

  • Chen, C.-P., R. E. Lee, and D. L. Denlinger. 1990b. A comparison of the responses of tropical and temperate flies (Diptera: Sarcophagidae) to cold and heat stress. J. Comp. Physiol. B (in press).

    Google Scholar 

  • Cheng, M. Y., F-U Hartl, J. Martin, R. A. Pollock, F. Kalousek, W. Neupert, E. M. Hallberg, R. L. Hallberg, and A. L. Horwich. 1989. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337:620–625.

    Article  Google Scholar 

  • Chirico, W. J., M. G. Waters, and G. Blobel. 1988. 70k heat shock related proteins stimulate protein translocation into microsomes. Nature 332:805–809.

    Article  Google Scholar 

  • Craig, E. A. 1985. The heat shock response. CRC Crit. Rev. Biochem. 18:239–280.

    Article  Google Scholar 

  • Czajka, M. C. and R. E. Lee, Jr. 1990. A rapid cold-hardening response protecting against cold shock injury in Drosophila melanogaster. J. Exp. Biol. 148:245–254.

    Google Scholar 

  • Denlinger, D. L. 1972. Seasonal phenology of diapause in the flesh fly Sarcophaga bullata. Ann. Entomol Soc. Am. 65:410–414.

    Google Scholar 

  • Denlinger, D. L. 1974. Diapause potential in tropical flesh flies. Nature 252:223–224.

    Article  Google Scholar 

  • Denlinger, D. L. 1978. The developmental response of flesh flies (Diptera: Sarcophagidae) to tropical seasons: variation in generation time and diapause in East Africa. Oecologia 35:105–107.

    Article  Google Scholar 

  • Denlinger, D. L. 1981. The physiology of pupal diapause in flesh flies. In Current Topics in Insect Endocrinology and Nutrition, eds. G. Bhaskaran, S. Friedman and J. G. Rodriguez, pp. 131–160. Plenum, New York.

    Chapter  Google Scholar 

  • Denlinger, D. L. 1985. Hormonal control of diapause. In Comprehensive Insect Physiology Biochemistry and Pharmacology, Vol. 8, eds. G. A. Kerkut and L. I. Gilbert, pp. 353–412. Pergamon Press, Oxford.

    Google Scholar 

  • Denlinger, D. L., M. Shukla, and D. L. Faustini. 1984. Juvenile hormone involvement in pupal diapause of the flesh fly Sarcophaga crassipalpis: regulation of infradian cycles of O2 consumption. J. Exp. Biol. 109:191–199.

    Google Scholar 

  • Denlinger, D. L., J. Giebultowicz, and T. Adedokun. 1988. Insect diapause: dynamics of hormone sensitivity and vulnerability to environmental stress. In Endocrinological Frontiers in Physiological Insect Ecology, eds. F. Sehnal, A. Zabza, and D. L. Denlinger, pp. 309–324. Wroclaw Technical University Press, Wroclaw.

    Google Scholar 

  • Deshaies, R. J., B. D. Koch, M. Werner-Washburne, E. A. Craig, and R. Schekman. 1988. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332:800–805.

    Article  Google Scholar 

  • Fink, K. and E. Zeuthen. 1980. Heat shock proteins in Tetrahymena studied under growth conditions. Exp. Cell Res. 128:23–30.

    Article  Google Scholar 

  • Garbe, J. C. and M. L. Pardue. 1986. Heat shock locus 93D of Drosophila melanogaster. a spliced RNA most strongly conserved in the intron sequence. Proc. Natl. Acad. Sci. USA 83:1812–1816.

    Article  Google Scholar 

  • Giebultowicz, J. M. and D. L. Denlinger. 1986. Role of the brain and ring gland in regulation of pupal diapause in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. 32:161–166.

    Article  Google Scholar 

  • Guy, C. L., K. J. Niemi, and R. Brambl. 1985. Altered gene expression during cold acclimation of spinach. Proc. Natl. Acad. Sci. USA 82:3673–3677.

    Article  Google Scholar 

  • Henrich, V. C. and D. L. Denlinger. 1982. A maternal effect that eliminates pupal diapause in progeny of the flesh fly, Sarcophaga bullata. J. Insect Physiol. 28:881–884.

    Article  Google Scholar 

  • Joplin, K. H., G. D. Yocum, and D. L. Denlinger. 1990. Cold shock elicits expression of heat shock proteins in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. (in press).

    Google Scholar 

  • Joplin, K. H. and D. L. Denlinger. 1990. Developmental and tissue specific control of the heat shock induced 70 kDa related proteins in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. 36:239–249.

    Article  Google Scholar 

  • Ketola-Pirie, C. A. and B. G. Atkinson. 1983. Cold- and heat-shock induction of new gene expression in cultured amphibian cells. Can. J. Biochem. Cell Biol. 61:462–471.

    Article  Google Scholar 

  • Lee, R. E., Jr. and D. L. Denlinger. 1985. Cold tolerance in diapausing and non-diapausing stages of the flesh fly, Sarcophaga crassipalpis. Physiol. Entomol. 10:309–315.

    Article  Google Scholar 

  • Lee, R. E., Jr., C-P. Chen, and D. L. Denlinger. 1987. A rapid cold-hardening process in insects. Science 238:1415–1417.

    Article  Google Scholar 

  • Lee, R. E., Jr., D. L. Denlinger, and C.-P. Chen. 1988. Insect cold-hardiness and diapause: regulatory relationships. In Endocrinological Frontiers in Physiological Insect Ecology, eds. F. Sehnal, A.

    Google Scholar 

  • Zabza, and D. L. Denlinger, pp. 243–262. Wroclaw Technical University Press, Wroclaw.

    Google Scholar 

  • Lindquist, S. 1986. The heat shock response. Annu. Rev. Biochem. 55:1151–1191.

    Article  Google Scholar 

  • Maniak, M. and W. Nellen. 1988. A developmentally regulated membrane protein gene in Dictyostelium discoideum is also induced by heat shock and cold shock. Mol. Cell. Biol. 8:153–159.

    Google Scholar 

  • McGrath, J. J. 1987. Cold shock: thermoelastic stress in chilled biological membranes. In Network Thermodynamics, Heat and Mass Transfer in Biotechnology, ed. K. R. Diller, pp. 57–66. United Engineering Center, New York.

    Google Scholar 

  • Meyer, S. G. E. 1978. Effects of heat, cold, anaerobiosis and inhibitors on metabolite concentrations in larvae of Callitroga macellaria. Insect Biochem. 8:471–477.

    Article  Google Scholar 

  • Morris, G. J., G. Coulson, M. A. Meyer, and M. R. McLellan. 1983. Cold shock—a widespread cellular reaction. Cryo-Lett. 4:179–192.

    Google Scholar 

  • Ohtaki, T. and M. Takahashi. 1972. Induction and termination of pupal diapause in relation to the change of ecdysone titer in the flesh fly, Sarcophaga peregrina. Jap. J. Med. Sci. Biol. 25:369–376.

    Google Scholar 

  • Pardue, M. L., W. G. Bendena, and J. C. Garbe. 1987. Heat shock: puffs and response to environmental stress. In Results and Problems in Cell Differentiation. Vol. 14, ed. W. Henning pp. 121–131. Springer-Verlag, Berlin.

    Google Scholar 

  • Petersen, N. S. and H. K. Mitchell. 1985. Heat shock proteins. In Comprehensive Insect Physiology Biochemistry and Pharmacology, Vol. 10, eds. G. A. Kerkut and L. I. Gilbert, pp. 347–366. Pergamon Press, Oxford.

    Google Scholar 

  • Pratt, W. B., E. R. Sanchez, E. H. Bresnick, S. Meshinchi, L. C. Scherrer, F. C. Dalman, and M. J. Welsh. 1989. Interaction of the glucocorticoid receptor with the Mr90,000 heat shock protein: an evolving model of ligand-mediated receptor transformation and translocation. Cancer Res. Suppl. 49:2222–2229.

    Google Scholar 

  • Quinn, P. J. 1985. A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiol. 22:128–146.

    Article  Google Scholar 

  • Reading, D. S., R. L. Hallberg, and A. M. Myers. 1989. Characterization of the yeast HSP60 gene coding for a mitochondrial assembly factor. Nature 337:655–659.

    Article  Google Scholar 

  • Richard, D. S. and D. S. Saunders. 1987. Prothoracic gland function in diapause and nondiapause Sarcophaga argyrostoma and Calliphora vicina. J. Insect Physiol. 33:385–392.

    Article  Google Scholar 

  • Rockey, S. J., B. B. Miller, and D. L. Denlinger. 1989. A diapause maternal effect in the flesh fly, Sarcophaga bullata: transfer of information from mother to progeny. J. Insect Physiol. 35:533–558.

    Article  Google Scholar 

  • Schlesinger, M. J. 1986. Heat shock proteins: the search for function. J. Cell Biol. 103:321–325.

    Article  Google Scholar 

  • Schlesinger, M. J., M. Ashburner, and A. Tissieres, eds. 1982. Heat Shock from Bacteria to Man. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Sheldon, L. and E. M. Berger. 1988. Heat shock protein genes in Drosophila. In Endocrinological Frontiers in Physiological Insect Ecology, eds. F. Sehnal, A. Zabza, and D. L. Denlinger, pp. 347–358. Wroclaw Technical University Press, Wroclaw.

    Google Scholar 

  • Walker, G. P. and D. L. Denlinger. 1980. Juvenile hormone and moulting hormone titers in diapause and nondiapause destined flesh flies. J. Insect Physiol. 26:661–6641

    Article  Google Scholar 

  • Walker, V. K., S. Whyard, G. R. Wyatt, and M. R. Kanost. 1986. Heat shock and gene transfer in locusts. J. Cell. Biochem. 10C:75.

    Google Scholar 

  • Watson, P. F. and G. J. Morris. 1987. Cold shock injury in animal cells. In Temperature and Animal Cells, eds. K. Bowler and B. J. Fuller, pp. 311–340. Society for Experimental Biology, Cambridge.

    Google Scholar 

Download references

Authors

Editor information

Richard E. Lee Jr. David L. Denlinger

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Chapman and Hall

About this chapter

Cite this chapter

Denlinger, D.L., Joplin, K.H., Chen, CP., Lee, R.E. (1991). Cold Shock and Heat Shock. In: Lee, R.E., Denlinger, D.L. (eds) Insects at Low Temperature. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0190-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0190-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0192-0

  • Online ISBN: 978-1-4757-0190-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics