Skip to main content

The Water Relations of Overwintering Insects

  • Chapter

Abstract

Water is the universal solvent of living organisms. Biochemical and physiological processes require an optimal interaction with water, and organisms possess efficient mechanisms to regulate the amounts and activities of extracellular and intracellular water. Terrestrial animals tend to loose water by evaporation. Insects, which are among the most successful terrestrial animals, have a cuticular exoskeleton with a low water permeability that reduces the evaporative water loss substantially (Edney, 1977).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angell, C. A. 1983. Supercooled water. Annu. Rev. Phys. Chem. 34:593–630.

    Article  Google Scholar 

  • Baust, J. G. 1973. Mechanisms of cryoprotection in freeze-tolerant animal systems. Cryobiol. 10:197–205.

    Article  Google Scholar 

  • Baust, J. G. 1980. Low temperature tolerance in an antarctic insect: a relict adaptation. Cryo-Lett. 1:360–371.

    Google Scholar 

  • Baust, J. G. and K. E. Zachariassen. 1983. Seasonally active cell matrix associated ice nucleators in an insect. Cryo-Lett. 4:65–71.

    Google Scholar 

  • Bigg, E. K. 1953. The supercooling of water. Proc. Phys. Soc. Lond. B66:688–694.

    Google Scholar 

  • Block, W. 1982. Cold hardiness in invertebrate poikilotherms. Comp. Biochem. Physiol. 73A:581–593.

    Article  Google Scholar 

  • Block, W. and S. R. Young. 1979. Measurements of supercooling points in small arthropods and water droplets. Cryo-Lett. 1:85–91.

    Google Scholar 

  • Block, W. and J. Zettel. 1980. Cold-hardiness of some alpine Collembola. Ecol. Entomol. 5:1–9.

    Article  Google Scholar 

  • DeVries, A. L. 1982. Biological antifreeze agents in coldwater fishes. Comp. Biochem. Physiol. 73A:627–640.

    Article  Google Scholar 

  • Dick, D. A. 1979. Structure and properties of water in the cell. In Mechanisms of Osmoregulation in Animals, ed. R. Gilles, pp. 3–45. John Wiley, New York.

    Google Scholar 

  • Duman, J. G. 1977. The role of macromolecular antifreezes in the darkling beetle Meracantha contracta. J. Comp. Physiol. 115:279–286.

    Google Scholar 

  • Edney, E. T. 1977. Water balance in land arthropods. In Zoophysiology and Ecology, Vol. 9. Springer, Berlin.

    Google Scholar 

  • Evans, L. F. 1967. Ice nucleation under pressure and in salt solution. Trans. Faraday Soc. 63:3060–3071.

    Article  Google Scholar 

  • Gherken, U. 1984. Winter survival of an adult bark beetle Ips acuminatus Gyll. J. Insect Physiol. 30:421–429.

    Article  Google Scholar 

  • Hansen, T. N. and J. G. Baust. 1988. Serial dilution of Tenebrio molitor haemolymph: Analysis of antifreeze activity by differential scanning calorimetry. Cryo-Lett. 7:386–391.

    Google Scholar 

  • Horwath, K. L. and J. G. Duman. 1984. Yearly variations in the overwintering mechanisms of the cold-hardy beetle Dendroides canadensis. Physiol. Zool. 57:40–45.

    Google Scholar 

  • Lee, R. E. Jr. and E. A. Lewis. 1985. Effect of temperature and duration of exposure on tissue ice formation in the gall fly, Eurosta solidaginis (Diptera, Tephritidae). Cryo-Lett. 7:25–34.

    Google Scholar 

  • Lee, R. E. Jr., K. E. Zachariassen, and J. G. Baust. 1981. Effect of cryoprotectants on the activity of hemolymph nucleating agents in physical solution. Cryobiol. 18:511–514.

    Article  Google Scholar 

  • LeFevre, P. G. 1964. The osmotically functional water content of the human erythrocyte. J. Gen. Physiol. 47:585–603.

    Article  Google Scholar 

  • Lovelock, J. E. 1953. The mechanism of the cryoprotective effect of glycerol against freezing and thawing. Biochim. Biophys. Acta 11:28–38.

    Article  Google Scholar 

  • Lusena, C. V. 1955. Ice propagation in systems of biological interest. III. Effects of solutes on nucleation and growth of ice crystals. Arch. Biochem. Biophys. 57:277–284.

    Article  Google Scholar 

  • MacKenzie, A. P. 1977. Non-equilibrium freezing behavior of aqueous systems. Philos. Trans. R. Soc. London [Biol. Sci.] 278:167–189.

    Article  Google Scholar 

  • Meryman, H. T. 1971. Osmotic stress as a mechanism of freezing injury. Cryobiol. 8:489–500.

    Article  Google Scholar 

  • Miller, L. K. 1978. Freezing tolerance in relation to cooling rate in an adult insect. Cryobiol. 15:345–349.

    Article  Google Scholar 

  • Ring, R. 1982. Freezing-tolerant insects with low supercooling points. Comp. Biochem. Physiol. 73A:605–612.

    Article  Google Scholar 

  • Salt, R. W. 1953. The influence of food on cold-hardiness of insects. Can. Entomol. 85:261–269.

    Article  Google Scholar 

  • Salt, R. W. 1955. Extent of ice formation in frozen tissues and a new method for its measurement. Can. J. Zool. 33:391–403.

    Article  Google Scholar 

  • Salt, R. W. 1961. Principles of insect cold hardiness. Annu. Rev. Entomol. 6:55–74.

    Article  Google Scholar 

  • Scholander, P. F. 1971. State of water in osmotic processes. Microvasc. Res. 3:215–232.

    Article  Google Scholar 

  • Shimada, K. 1989. Ice-nucleating activity in the alimentary canal of the freezing-tolerant prepupae of Trichiocampus populi (Hymenoptera: Tenthredinidae). J. Insect. Physiol. 35:113–120.

    Article  Google Scholar 

  • Storey, K. B., J. G. Baust, and P. Buescher. 1981. Determination of water “bound” by soluble subcellular components during low-temperature acclimation in the gall fly larva, Eurosta solidagensis. Cryobiol. 18:315–321.

    Article  Google Scholar 

  • Sømme, L. and E.-M. Conradi-Larsen. 1977. Cold-hardiness of collembolans and oribatid mites from windswept mountain ridges. Oikos 29:118–126.

    Article  Google Scholar 

  • van der Laak, S. 1982. Physiological adaptation to low temperature in freeze-tolerant Phyllodecta laticollis beetles. Comp. Biochem. Physiol. 73A:613–620.

    Article  Google Scholar 

  • Wasylyk, J. M., A. R. Tice, and J. G. Baust. 1988. Partial glass formation: A novel mechanism of insect cryoprotection. Cryobiol. 25:451–458.

    Article  Google Scholar 

  • Weast, R. C., ed. 1977. CRC Handbook of Chemistry and Physics, 58th ed. Chemical Rubber Company Press, Cleveland.

    Google Scholar 

  • Zachariassen, K. E. 1979. The mechanism of the cryoprotective effect of glycerol in beetles tolerant to freezing. J. Insect Physiol. 25:29–32.

    Article  Google Scholar 

  • Zachariassen, K. E. 1980. The role of polyols and nucleating agents in cold-hardy beetles. J. Comp. Physiol. 140:227–234.

    Google Scholar 

  • Zachariassen, K. E. 1985. Physiology of cold tolerance in insects. Physiol. Rev. 65:799–832.

    Google Scholar 

  • Zachariassen, K. E., J. G. Baust, and R. E. Lee, Jr. 1982. A method for quantitative and qualitative determination of ice nucleating agents in insect hemolymph. Cryobiol. 19:180–184.

    Article  Google Scholar 

  • Zachariassen, K. E. and H. T. Hammel. 1976. Nucleating agents in the haemolymph of insects tolerant to freezing. Nature 262:285–287.

    Article  Google Scholar 

  • Zachariassen, K. E. and H. T. Hammel. 1988. The effect of ice nucleating agents on ice-nucleating activity. Cryobiol. 25:143–147.

    Article  Google Scholar 

  • Zachariassen, K. E., H. T. Hammel, and W. Schmidek. 1979. Osmotically inactive water in relation to freezing in Eleodes blanchardi beetles. Comp. Biochem. Physiol. 63A:203–206.

    Article  Google Scholar 

  • Zachariassen, K. E. and J. A. Husby. 1982a. Antifreeze effect of thermal hysteresis agents protects highly supercooled insects. Nature 298:865–867.

    Article  Google Scholar 

  • Zachariassen, K. E. and J. A. Husby. 1982b. Stabilization of highly supercooled insects by thermal hysteresis antifreeze agents. Cryo-Lett. 3:316.

    Google Scholar 

Download references

Authors

Editor information

Richard E. Lee Jr. David L. Denlinger

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Chapman and Hall

About this chapter

Cite this chapter

Zachariassen, K.E. (1991). The Water Relations of Overwintering Insects. In: Lee, R.E., Denlinger, D.L. (eds) Insects at Low Temperature. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0190-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0190-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0192-0

  • Online ISBN: 978-1-4757-0190-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics