Skip to main content

Principles of Insect Low Temperature Tolerance

  • Chapter
Insects at Low Temperature

Abstract

It is well known that temperature has a pervasive effect on insects. Nearly every aspect of an insect’s life is influenced by temperature, from direct effects on the kinetics of enzymatic reactions, to defining the limits of physiological function and behavior, and ultimately to shaping of evolutionary pathways. As a group, insects, more than any other eukaryotic taxon, have evolved not only to survive but to flourish in a wide variety of thermal environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angell, C. A. 1982. Supercooled water. In Water: A Comprehensive Treatise, Vol. 7, ed. F. Franks p. 1–81. Plenum Press, New York.

    Google Scholar 

  • Ashwood-Smith, M.J. and J. Farrant, eds. 1980. Low Temperature Preservation in Medicine andBiology. Pitman Medical, Bath.

    Google Scholar 

  • Bale, J. S. 1987. Insect cold hardiness-an ecological perspective. J. Insect Physiol. 33:899–908.

    Article  Google Scholar 

  • Bale, J. S., R. Harrington, and M. S. Clough. 1988. Low temperature mortality of the peach-potato aphid Myzus persicae. Ecol. Entomol. 13:121–129.

    Article  Google Scholar 

  • Bale, J. S., T. N. Hansen, and J. G. Baust. 1989a. Nucleators and sites of nucleation in the freeze tolerant larvae of the gallfly Eurosta solidaginis (Fitch). J. Insect Physiol. 35:291–298.

    Article  Google Scholar 

  • Bale, J. S., T. N. Hansen, M. Nishino, and J. G. Baust. 1989b. Effect of cooling rate on the survival of larvae, pupariation, and adult emergence of the gall fly Eurosta solidaginis. Cryobiol. 26:285–289.

    Article  Google Scholar 

  • Baust, J. G. 1973. Mechanisms of cryoprotection in freezing tolerant animal systems. Cryobiol. 10:197–205.

    Article  Google Scholar 

  • Baust, J. G. and J. S. Edwards. 1979. Mechanisms of freezing tolerance in an Antarctic midge, Belgica antarctica. Physiol. Entomol. 4:1–5.

    Article  Google Scholar 

  • Baust, J. G. and R. E. Lee. 1981. Divergent mechanisms of frost-hardiness in two populations of the gall fly, Eurosta solidaginis. J. Insect Physiol. 27:485–490.

    Article  Google Scholar 

  • Baust, J. G. and L. K. Miller. 1970. Seasonal variations in glycerol content and its influence on cold-hardiness in the Alaskan carabid beetle, Pterostichus brevicornis. J. Insect Physiol. 16:979–990.

    Article  Google Scholar 

  • Baust, J. G. and L. K. Miller. 1972. Influence of low temperature acclimation on cold-hardiness in the beetle, Pterostichus brevicornis. J. Insect Physiol. 18:1935–1947.

    Article  Google Scholar 

  • Baust, J. G. and R. R. Rojas. 1985. Review-Insect cold hardiness: facts and fancy. J. Insect. Physiol. 31:755–759.

    Article  Google Scholar 

  • Baust, J. G. and K. E. Zachariassen. 1983. Seasonally active cell matrix associated ice nucleators in an insect. Cryo-Lett. 4:65–71.

    Google Scholar 

  • Baust, J. G., R. Grandee, G. Condon, and R. E. Morrissey. 1979. The diversity of overwintering strategies utilized by separate populations of gall insects. Physiol. Zool. 52:572–580.

    Google Scholar 

  • Block, W. and J. G. Duman. 1989. Presence of thermal hysteresis producing antifreeze proteins in the Antarctic mite, Alaskozetes antarcticus. J. Exp. Zool. 250:29–231.

    Article  Google Scholar 

  • Cannon, R. J. C. and W. Block. 1988. Cold tolerance of microarthropods. Biol. Rev. 63:23–77.

    Article  Google Scholar 

  • Carpenter, J. F. and J. H. Crowe. 1988. The mechanism of cryoprotection of proteins by solutes. Cryobiol. 25:244–255.

    Article  Google Scholar 

  • Carpenter, J. F., B. Martin, L. M. Crowe and J. H. Crowe. 1987. Stabilization of phosphofructokinase during air-drying with sugars and sugar/transition metal mixtures. Cryobiol. 24:455–464.

    Article  Google Scholar 

  • Chen, C. P., D. L. Denlinger, and R. E. Lee, 1987a. Cold-shock injury and rapid cold hardening in the flesh fly, Sarcophaga crassipalpis. Physiol. Zool. 60:297–304.

    Google Scholar 

  • Chen, C. P., D. L. Denlinger, and R. E. Lee. 1987b. Responses of nondiapausing flesh flies (Diptera: Sarcophagidae) to low rearing temperatures: Developmental rate, cold tolerance and glycerol concentrations. Ann. Entomol Soc. Am. 80:790–796.

    Google Scholar 

  • Clegg, J. S. 1981. Metabolic consequences of the extent and disposition of the aqueous intracellular environment. J. Exp. Zool. 215:303–313.

    Article  Google Scholar 

  • Crowe, J. H. and J. S. Clegg, eds. 1973. Anhydrobiosis. Dowden, Hutchinson and Ross, Stoudsburg, Pennsylvania.

    Google Scholar 

  • Crowe, J. H., L. M. Crowe, and R. Mouradian. 1983. Stabilization of biological membranes at low water activities. Cryobiol. 20:346–356.

    Article  Google Scholar 

  • Crowe, L. M., R. Mouradian, J. H. Crowe, S. A. Jackson, and C. Womersley. 1984. Effects of carbohydrates on membrane stability at low water activities. Biochim. Biophys. Acta 769:141–150.

    Article  Google Scholar 

  • Crowe, J. H., L. M. Crowe, J. F. Carpenter, and C. A. Wistrom. 1987. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem. J. 242:1–10.

    Google Scholar 

  • Czajka, M. C. and R. E. Lee, 1990. A rapid cold-hardening response protecting against cold shock injury in Drosophila melanogaster. J. Exp. Biol. 148:245–254.

    Google Scholar 

  • Danks, H. V. 1971. Overwintering of some north temperate and arctic Chironomidae I. the winter environment. Can. Entomol. 103:589–604.

    Article  Google Scholar 

  • Danks, H. V. 1987. Insect Dormancy: An Ecological Perspective. Biological Survey of Canada, Ottawa, Ontario.

    Google Scholar 

  • Dubach, P., Smith, F., D. Pratt, and C. M. Stewart. 1959. Possible role of glycerol in the winter-hardiness of insects. Nature 184:288–289.

    Article  Google Scholar 

  • Duman, J. G. 1980. Factors involved in the overwintering survival of the freeze tolerant beetle Dendroides canadensis. J. Comp. Physiol. 136:53–59.

    Google Scholar 

  • Duman, J. G. and K. L. Horwath. 1983. The role of hemolymph proteins in the cold tolerance of insects. Annu. Rev. Physiol. 45:261–270.

    Article  Google Scholar 

  • Duman, J. G., L. G. Neven, J. M. Beals, K. R. Olson, and F. J. Castellino. 1985. Freeze-tolerance adaptations, including haemolymph protein and lipoprotein nucleators, in the larvae of the cranefly Tipula trivittata. J. Insect Physiol. 31:1–8.

    Article  Google Scholar 

  • Enomoto, O. 1981. Larval diapause in Chymomyza costata (Diptera: Drosophilidae) II. Frost avoidance. Low Temp. Sc. 39:31–39.

    Google Scholar 

  • Fahy, G. M., D. R. MacFarlane, C. A. Angell, and H. T. Meryman. 1984. Vitrification as an approach to cryopreservation. Cryobiol. 21:407–426.

    Article  Google Scholar 

  • Fields, P. G. and J. N. McNeil. 1988. The cold-hardiness of Ctenucha virginica (Lepidoptera: Arctiidae) larvae, a freezing-tolerant species. J. Insect. Physiol. 34:269–277.

    Article  Google Scholar 

  • Franks, F. 1985. Biophysics and Biochemistry at Low Temperatures. Cambridge University Press, Cambridge.

    Google Scholar 

  • Franks, F. 1987. Nucleation: a maligned and misunderstood concept. Cryo-Lett. 8:53–55.

    Google Scholar 

  • Gehrken, U. 1984. Winter survival of an adult bark beetle, Ips acuminatus Gyll. J. Insect Physiol. 30:421–429.

    Article  Google Scholar 

  • Gehrken, U. 1985. Physiology of diapause of an adult bark beetle, Ips acuminatus Gyll., studied in relation to cold hardiness. J. Insect Physiol. 31:909–916.

    Article  Google Scholar 

  • Hamilton, R. L., D. E. Mullins, and D. M. Orcutt. 1985. Freezing-tolerance in the woodroach Cryptocercus punctulatus (Scudder). Experientia 41:1535–1537.

    Article  Google Scholar 

  • Hamilton, M. D., R. R. Rojas, and J. G. Baust. 1986. Juvenile hormone: modulation of cryoprotectant synthesis in Eurosta solidaginis by a component of the endocrine system. J. Insect Physiol. 32:971–979.

    Article  Google Scholar 

  • Hanec, W. and S. D. Beck. 1960. Cold hardiness in the European corn borer, Pyrausta nubilalis (Hubn.). J. Insect Physiol. 5:169–180.

    Article  Google Scholar 

  • Heinrich, B. and T. P. Mommsen. 1985. Flight of winter moths near 0°C. Science 228:177–179.

    Article  Google Scholar 

  • Hinton, H. E. 1960. A fly larva that tolerates dehydration and temperatures of -270° to +102°C. Nature 188:336–337.

    Article  Google Scholar 

  • Hoffmann, K. H. 1985. Metabolic and enzyme adaptation to temperature. In Environmental Physiology and Biochemistry of Insects, ed. K. H. Hoffmann, pp. 1–32. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Horwath, K. L. and J. G. Duman, 1983. Induction of antifreeze protein production by juvenile hormone in larvae of the beetle, Dendroides canadensis. J. Comp. Physiol. 151:233–240.

    Google Scholar 

  • Horwath, K. L. and J. G. Duman. 1984. Further studies on the involvement of the circadian system in photoperiodic control of antifreeze protein production in the beetle Dendroides canadensis. J. Insect. Physiol. 30:947–955.

    Article  Google Scholar 

  • Humble, L. M. and R. A. Ring. 1985. Inoculative freezing of a larval parasitoid within its host. Cryo-Lett. 6:59–66.

    Google Scholar 

  • Johnston, S. L. and R. E. Lee. 1990. Regulation of supercooling and nucleation in a freeze intolerant beetle (Tenebrio molitor). Cryobiol. 27: 562–568.

    Article  Google Scholar 

  • Kirchner, W. 1973. Ecological aspects of cold resistance in spiders. In Effects of Temperature on Ectothermic Organisms, ed. W. Weiser, pp. 271–279. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Knight, C.A. 1967. The Freezing of Supercooled Fluids. Van Nostrand, Princeton.

    Google Scholar 

  • Knight, C. A. and J. G. Duman. 1986. Inhibition of recrystallization of ice by insect thermal hysteresis proteins: a possible cryoprotective role. Cryobiol. 23:256–262.

    Article  Google Scholar 

  • Knight, J. D., J. S. Bale, F. Franks, S. F. Mathias, and J. G. Baust. 1986. Insect cold hardiness: supercooling points and pre-freeze mortality. Cryo-Lett. 7:194–203.

    Google Scholar 

  • Kohshima, S. 1984. A novel cold-tolerant insect found in a Himalayan glacier. Nature 310:225–227.

    Article  Google Scholar 

  • Kukal, O., A. S. Serianni, and J. G. Duman. 1988. Glycerol metabolism in a freeze-tolerant arctic insect: an in vivo 13 C NMR study. J. Comp. Physiol. 158:175–183.

    Google Scholar 

  • Kukal, O., J. G. Duman, and A. S. Serianni. 1989. Cold-induced mitochondrial degradation and cryoprotectant synthesis in freeze-tolerant arctic caterpillars. J. Comp. Physiol. 158:661–671.

    Google Scholar 

  • Layne, J. R., R. E. Lee, and J. L. Huang. 1990. Inoculation triggers freezing at high subzero temperatures in a freeze-tolerant frog (Rana sylvatica) and insect (Eurosta solidaginis). Can. J. Zool. 68:506–510.

    Article  Google Scholar 

  • Lee, R. E. 1980. Physiological adaptations of Coccinellidae to supranivean and subnivean hibernacula. J. Insect Physiol. 26:135–138.

    Article  Google Scholar 

  • Lee, R. E. 1989. Insect cold-hardiness: to freeze or not to freeze. BioScience 39:308–313.

    Article  Google Scholar 

  • Lee, R. E. and J. G. Baust. 1981. Seasonal patterns of cold-hardiness in Antarctic terrestrial arthropods. Comp. Biochem. Physiol. 70:579–582.

    Article  Google Scholar 

  • Lee, R. E. and J. G. Baust. 1987. Cold-hardiness in the Antarctic tick, Ixodes uriae. Physiol. Zool. 60:499–506.

    Google Scholar 

  • Lee, R. E., C. P. Chen, M. H. Meacham, and D. L. Denlinger. 1987a. Ontogenetic patterns of cold-hardiness and glycerol production in Sarcophaga crassipalpis. J. Insect Physiol. 33:587–592.

    Article  Google Scholar 

  • Lee, R. E., C. P. Chen, and D. L. Denlinger. 1987b. A rapid cold-hardening process in insects. Science 238:1415–1417.

    Article  Google Scholar 

  • Lee, R. E. and D. L. Denlinger. 1985. Cold tolerance in diapausing and nondiapausing stages of the flesh fly, Sarcophaga crassipalpis. Physiol. Ent. 10: 309–315.

    Article  Google Scholar 

  • Lee, R. E., D. L. Denlinger, and C. P. Chen. 1988. Insect cold-hardiness and diapause: Regulatory relationships. In Endocrinological Frontiers in Physiological Insect Ecology, eds. F. Sehnal, D. L. Denlinger, and A. Zabza, pp. 243–262. Wroclaw Technical University Press, Wroclaw, Poland.

    Google Scholar 

  • Lee, R. E., and E. A. Lewis. 1985. Effect of temperature and duration of exposure on tissue ice formation in the gall fly, Eurosta solidaginis (Diptera, Tephritidae). Cryo-Lett. 6:25–34.

    Google Scholar 

  • Lee, R. E., J. M. Strong-Gunderson, M. R. Lee, K. S. Grove, and T. J. Riga. 1990. Isolation of ice nucleating active bacteria from insects. J. Expt. Zool. (in press).

    Google Scholar 

  • Lee, R. E., K. E. Zachariassen, and J. G. Baust. 1981. Effect of cryoprotectants on the activity of hemolymph nucleating agents in physical solutions. Cryobiol. 18:511–514.

    Article  Google Scholar 

  • Levitt, J. 1980. Responses of Plants to Environmental Stresses, Vol. 1, Chilling, Freezing and High Temperature Stresses. 2nd ed. Academic Press, New York.

    Google Scholar 

  • Lindow, S. E. 1987. Competitive exclusion of epiphytic bacteria by ice-Pseudomonas syringae mutants. Appl. Environ. Microbiol. 53:2520–2527.

    Google Scholar 

  • Lovelock, J. E. 1953. The mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochim. Biophys. Acta 11:28–36.

    Article  Google Scholar 

  • Luyet, B.J. 1966. Anatomy of the freezing process in physical systems. In Cryobiology, ed. H. T. Meryman, pp. 115–138. Academic Press, London.

    Google Scholar 

  • Mazur, P. 1984. Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247 (Cell Physiol. 16):C125-C142.

    Google Scholar 

  • McGrath, J. J. 1984. Effect of thermoelastic stress on thermal shock and the freezing response of cell-size, unilamellar liposomes. Cryobiol. 21:696–697.

    Article  Google Scholar 

  • McGrath, J. J. 1987. Cold shock: thermoelastic stress in chilled biological membranes. In Network Thermodynamics, Heat and Mass Transfer in Biotechnology, ed. K. R. Diller, ASME Bed Vol. 5, HTD Vol. 90, pp. 57–66.

    Google Scholar 

  • McGrath, J. J. and K. R. Diller, eds. 1988. Low Temperature Biotechnology. ASME Bed Vol. 10, HTD Vol. 98.

    Google Scholar 

  • Meryman, H. T., ed. 1966. Cryobiology. Academic Press, London.

    Google Scholar 

  • Meryman, H. T. 1974. Freezing injury and its prevention in living cells. Annu. Rev. Biophys. Bioeng. 3:341–363.

    Article  Google Scholar 

  • Miller, L. K. 1969. Freezing tolerance in an adult insect. Science 166:105–106.

    Article  Google Scholar 

  • Miller, L. K. 1978. Freezing tolerance in relation to cooling rate in an adult insect. Cryobiol. 15:345–349.

    Article  Google Scholar 

  • Miller, L. K. 1982. Cold-hardiness strategies of some adult and immature insects overwintering in interior Alaska. Comp. Biochem. Physiol. 73:595–604.

    Article  Google Scholar 

  • Morris, G. S. 1987. Direct chilling injury. In The Effects of Low Temperatures on Biological Systems, eds. B. W. W. Grout and G. J. Morris, pp. 120–146. Edward Arnold, London.

    Google Scholar 

  • Morrissey, R. and J. G. Baust. 1976. The ontogeny of cold tolerance in the gall fly, Eurosta solidaginis. J. Insect Physiol. 22:431–438.

    Article  Google Scholar 

  • Morrissey, R. and J. S. Edwards. 1979. Neural function in an alpine grylloblattid: a comparison with the house cricket, Acheta domesticus. Physiol. Entomol. 4:241–250.

    Article  Google Scholar 

  • Nordin, J. H., Z. Cui, and C.-M. Yin. 1984. Cold-induced glycerol accumulation by Ostrinia nubilalis larvae is developmentally regulated. J. Insect Physiol. 30:563–566.

    Article  Google Scholar 

  • Pegg, D. E. 1988. The nature of cryobiological problems In Low Temperature Biotechnology, eds. J. J. McGrath and K. R. Diller, ASME Bed Vol. 10, HTD Vol. 98 pp. 3–21.

    Google Scholar 

  • Pegg, D. E. and A. M. Karow. 1987. The Biophysics of Organ Cryopreservation. Plenum, New York.

    Google Scholar 

  • Quinn, P. J. 1985. A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiol. 22:128–146.

    Article  Google Scholar 

  • Rickards, J., M. J. Kelleher, and K. B. Storey. 1987. Strategies of freeze avoidance in larvae of the goldenrod gall moth. Epiblema scudderiana: winter profiles of a natural population. J. Insect Physiol. 33:443–450.

    Article  Google Scholar 

  • Ring, R. A. 1981. The physiology and biochemistry of cold tolerance in arctic insects. J. Thermal Biol. 6:219–229.

    Article  Google Scholar 

  • Ring, R. A. 1982. Freezing-tolerant insects with low supercooling points. Comp. Biochem. Physiol. 73:605–612.

    Article  Google Scholar 

  • Ring, R. A. and D. Tesar. 1981. Adaptations to cold in Canadian Arctic insects. Cryobiol. 18:199–211.

    Article  Google Scholar 

  • Rojas, R. R., R. E. Lee, and J. G. Baust, 1986. Relationship of environmental water content to glycerol accumulation in the freezing tolerant larvae of Eurosta solidaginis (Fitch). Cryo-Lett. 7:234–245.

    Google Scholar 

  • Rubinsky, B. and D. E. Pegg. 1988. A mathematical model for the freezing process in biological tissue. Proc. R. Soc. Lond. [Biol] 234:343–358.

    Article  Google Scholar 

  • Salt, R. W. 1936. Studies on the freezing process in insects. Technical Bulletin 116. University of Minnesota Agricultural Experimental Station.

    Google Scholar 

  • Salt, R. W. 1953. The influence of food on cold hardiness of insects. Can. Entomol. 85:261–269.

    Article  Google Scholar 

  • Salt, R. W. 1957. Natural occurrence of glycerol in insects and its relation to their ability to survive freezing. Can. Entomol. 89:491–494.

    Article  Google Scholar 

  • Salt, R. W. 1959. Survival of frozen fat body cells in an insect. Nature Lond. 184:1426.

    Article  Google Scholar 

  • Salt, R. W. 1961. Principles of insect cold hardiness. Annu. Rev. Entomol. 6:55–74.

    Article  Google Scholar 

  • Salt, R. W. 1962. Intracellular freezing in insects. Nature 193:1207–1208.

    Article  Google Scholar 

  • Salt, R. W. 1963. Delayed inoculative freezing of insects. Can. Entomol. 95:1190–1202.

    Article  Google Scholar 

  • Salt, R. W. 1966a. Factors influencing nucleation in supercooled insects. Can. J. Zool. 44:117–133.

    Article  Google Scholar 

  • Salt, R. W. 1966b. Effect of cooling rate on the freezing temperature of supercooled insects. Can. J. Zool. 44:655–659.

    Article  Google Scholar 

  • Salt, R. W. 1969. The survival of insects at low temperatures. In Dormancy and Survival, Symposium of the Society of Experimental Biology, Vol. 23, pp. 331–350.

    Google Scholar 

  • Schnell, R. C. 1976. Bacteria acting as natural ice nucleants at temperatures approaching — 1°C. Bull. Am. Meteorol. Soc. 57:1356–1357.

    Google Scholar 

  • Shimada, K. 1980. Some physiological properties associated with freeze-tolerance in diapausing pupae of Papilio machaon. Low Temp. Sci 38:53–60.

    Google Scholar 

  • Shimada, K. 1989. Ice-nucleating activity in the alimentary canal of the freezing-tolerant prepupae of Trichiocampus populi (Hymenoptera: Tenthredinidae). J. Insect Physiol. 35:113–120.

    Article  Google Scholar 

  • Shimada, K. and A. Riihimaa. 1988. Cold acclimation, inoculative freezing and slow cooling: essential factors contributing to the freeze-tolerance in diapausing larvae of Chymomyza costata (Diptera: Drosophilidae). Cryo-Lett. 9:5–10.

    Google Scholar 

  • Sømme, L. 1964. Effects of glycerol on cold-hardiness in insects. Can. J. Zool. 42:87–101.

    Article  Google Scholar 

  • Sømme, L. 1982. Supercooling and winter survival in terrestrial arthropods. Comp. Biochem. Physiol. 73:519–543.

    Article  Google Scholar 

  • Sømme, L. and W. Block. 1982. Cold-hardiness of Collembola at Signy Island, maritime Antarctic. Oikos 38:168–176.

    Article  Google Scholar 

  • Southwick, E. E. and G. Heldmaier. 1987. Temperature control in honeybee colonies. Bio Science 37:395–398.

    Google Scholar 

  • Steponkus, P. L., D. V. Lynch, M. Uemura, R. A. Balsamo, and T. Arvinte. 1988. Plant cryobiology: Cellular and molecular aspects of freezing injury and cold acclimation. In Low Temperature Biotechnology, eds. J. J. McGrath, and K. R. Diller, ASME Bed Vol. 10, HTD Vol. 98, pp. 47–56.

    Google Scholar 

  • Storey, K. B. and J. M. Storey. 1981. Biochemical strategies of overwintering in the gall fly larva, Eurosta solidaginis: effect of low temperature acclimation on the activities of enzymes of intermediary metabolism. J. Comp. Physiol. 144:191–199.

    Google Scholar 

  • Storey, K. B. and J. M. Storey, 1988. Freeze tolerance in animals. Physiol. Rev. 68:27–84.

    Google Scholar 

  • Storey, K. B., J. G. Baust, and P. Buescher. 1981. Determination of water “bound” by soluble subcellular components during low-temperature acclimation in the gall fly larva, Eurosta solidaginis. Cryobiol. 18:315–321.

    Article  Google Scholar 

  • Strong-Gunderson, J. M., R. E. Lee, and M. R. Lee. 1989. Ice nucleating bacteria promote transcuticular nucleation in insects. Cryobiol. 26:551.

    Article  Google Scholar 

  • Strong-Gunderson, J. M., R. E. Lee, M. R. Lee, K. S. Grove, and T. J. Riga. 1990. Ingestion of ice nucleating active bacteria increases the supercooling point of the lady beetle Hippodamia convergens. J. Insect Physiol. 36:153–157.

    Article  Google Scholar 

  • Taylor, M. J. 1987. Physio-chemical principles in low temperature biology. In The Effects of Low Temperatures on Biological Systems, eds. B. W. W. Grout and G. J. Morris. Edward Arnold, London, pp. 3–71.

    Google Scholar 

  • Tauber, M. J., C. A. Tauber, and S. Masaki. 1986. Seasonal Adaptations of Insects. Oxford University Press, New York.

    Google Scholar 

  • Tsumuki, H. and K. Kanehisa. 1979. Glycerol concentrations in haemolymph of hibernating larvae of the rice stem borer, Chilo suppressalis Walker: Effects of ligation and cold tolerance. Appl. Entomol. Zool. 14:497–499.

    Google Scholar 

  • Tsumuki, H. and K. Kanehisa. 1981. Effect of JH and ecdysone on glycerol and carbohydrate contents in diapausing larvae of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). Appl. Ent. Zool. 16:7–15.

    Google Scholar 

  • Turnock, W. J., R. J. Lamb, and R. P. Bodnaryk. 1983. Effects of cold stress during pupal diapause on the survival of Mamestra configurata (Lepidoptera: Noctuidae). Oecologia 56:185–192.

    Article  Google Scholar 

  • Vali, G., R. W. Fresh, E. L. Galyan, L. R. Maki, and R. C. Schnell, 1976. Biogenic ice nuclei. Part II. Bacterial sources. J. Atmos Sci. 33:1565–1570.

    Article  Google Scholar 

  • Warren, G. J. 1987. Bacterial ice nucleation: Molecular biology and applications Biotech. Gen. Eng. Rev. 5:107–135.

    Google Scholar 

  • Wasylyk, J. M., A. Tice, and J. G. Baust. 1988. Partial glass formation: a novel mechanism of insect cryoprotection. Cryobiol. 25:451–458.

    Article  Google Scholar 

  • Wood, F. E. and J. H. Nordin. 1976. Studies on the low temperature induced biogenesis of glycerol by adult Protophormia terranovae. J. Insect Physiol. 22:1665–1674.

    Article  Google Scholar 

  • Young, S. R. and W. Block. 1980. Experimental studies on the cold tolerance of Alaskozetes antarcticus. J. Insect Physiol. 26:189–200.

    Article  Google Scholar 

  • Zachariassen, K. E. 1973. Seasonal variation in hemolymph osmolality and osmotic contribution of glycerol in adult Rhagium inquisitor L. (Col., Cerambycidae). Norsk. Entomol. Tidsskr. 20:259–262.

    Google Scholar 

  • Zachariassen, K. E. 1985. Physiology of cold tolerance in insects. Physiol. Rev. 65:799–832.

    Google Scholar 

  • Zachariassen, K. E. and H. T. Hammel. 1976. Nucleating agents in the haemolymph of insects tolerant to freezing. Nature 262:285–287.

    Article  Google Scholar 

  • Zachariassen, K. E., H. T. Hammel, and W. Schmidek. 1979. Studies on freezing injuries in Eleodes blanchardi beetles. Comp. Biochem. Physiol. 63:199–202.

    Article  Google Scholar 

  • Zachariassen, K. E. and J. A. Husby. 1982. Antifreeze effect of thermal hysteresis agents protects highly supercooled insects. Nature 298:865–867.

    Article  Google Scholar 

Download references

Authors

Editor information

Richard E. Lee Jr. David L. Denlinger

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Chapman and Hall

About this chapter

Cite this chapter

Lee, R.E. (1991). Principles of Insect Low Temperature Tolerance. In: Lee, R.E., Denlinger, D.L. (eds) Insects at Low Temperature. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0190-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0190-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0192-0

  • Online ISBN: 978-1-4757-0190-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics