Skip to main content

Cryobiology of Drosophila Melanogaster Embryos

  • Chapter
Insects at Low Temperature

Abstract

The common fruit fly Drosophila melanogaster is the subject of investigation in many diverse areas of biology. It has been studied intensively by geneticists, developmental and molecular biologists, neurobiologists, population and evolutionary biologists, entomologists, and chronobiologists. Currently, interest in D. melanogaster is most intense among molecular biologists, but studies of D. melanogaster have a long and distinguished history, dating back to Thomas Hunt Morgan in the first decade of this century. As a result of both past and present activity, there is an enormous number of D. melanogaster genetic stocks. In 1985 it was estimated that the number of different stocks was in excess of 30,000 and was rapidly increasing because of the increased number of investigators studying Drosophila, the increased number of large scale mutant screens, and the generation of new stocks by DNA transformation. Since then, the number of mutant stocks is even greater, especially since so many germ line transformants have been obtained; for example, in Drosophila Information Service (June 1988), some 1350 entries were recorded in the “clone list.” Many of these clones have been reinserted in several different places in the germ line via P-element mediated transformation. We estimate that over 50,000 different genetic lines of D. melanogaster are now maintained in national and international stock centers and in the laboratories of individual investigators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arking, R. and A. Parente. 1980. Effects of RNA inhibitors on the development of Drosophila embryos permeabilized by a new technique. J. Exp. Zool. 212:183–184.

    Article  Google Scholar 

  • Cowley, C. W., W. J. Timson, and J. A. Sawdye. 1961. Ultra rapid cooling techniques in the freezing of biological materials. Biodynamica 8:317–329.

    Google Scholar 

  • Dowgert, M. F. and P. L. Steponkus. 1983. Effect of cold acclimation on intracellular ice formation in isolated protoplasts. Plant Physiol. 72:978–988.

    Article  Google Scholar 

  • Franks, F. and M. Bray. 1980. Mechanism of ice nucleation in undercooled plant cells. Cryo-Lett. 1:221–226.

    Google Scholar 

  • Franks, F., S. F. Mathias, P. Galfre, S. D. Webster, and D. Brown. 1983. Ice nucleation and freezing in undercooled cells. Cryobiol. 20:298–309.

    Article  Google Scholar 

  • Hatton, B. and P. L. Steponkus. 1987. Computerized cryomicroscopic video image analysis. Cryobiol. 24:555.

    Article  Google Scholar 

  • Leibo, S. P., S. P. Myers, and P. L. Steponkus. 1988. Survival of Drosophila melanogaster embryos cooled to subzero temperatures. Cryobiol. 25:545–546.

    Article  Google Scholar 

  • Limbourg, B. and M. Zalokar. (1973. Permeabilization of Drosophila eggs. Dev. Biol. 35:382–387.

    Article  Google Scholar 

  • Lin, T. T. 1989. Determination and modelling of osmometric behavior of Drosophila melanogaster embryos. Ph.D. Thesis. Cornell University, Ithaca, NY.

    Google Scholar 

  • Lin, T. T., S. P. Myers, R. E. Pitt, and P. L. Steponkus. 1987. Volumetric behavior and hydraulic conductivity of Drosophila embryos. Cryobiol. 24:542–543.

    Article  Google Scholar 

  • Lin, T. T., R. E. Pitt, and P. L. Steponkus. 1988. Permeability of Drosophila melanogaster embryos to ethylene glycol and glycerol. Cryobiol. 25:527–528.

    Article  Google Scholar 

  • Lin, T. T., R. E. Pitt, and P. L. Steponkus. 1989a. Osmometric behavior of Drosophila melanogaster embryos. Cryobiol. 26:453–471.

    Article  Google Scholar 

  • Lin, T. T., R. E. Pitt, and P. L. Steponkus. 1990b. Permeability of Drosophila melanogaster embryos to ethylene glycol and glycerol. Cryobiology (in press).

    Google Scholar 

  • Luyet, B. 1961. A method for increasing the cooling rate in refrigeration by immersion in liquid nitrogen or in other boiling baths. Biodynamica 8:331–329.

    Google Scholar 

  • Lynch, D. V., S. P. Myers, S. P. Leibo, R. J. Maclntyre, andP. L. Steponkus. 1988. Permeabilization of Drosophila eggs using isopropanol and hexane. DIS 67:89–90.

    Google Scholar 

  • Lynch, D. V., T. T. Lin, S. P. Myers, S. P. Leibo, R. J. Maclntyre, R. E. Pitt, and P. L. Steponkus. 1989. A two-step method for permeabilization of Drosophila eggs. Cryobiol. 26:445–452.

    Article  Google Scholar 

  • MacFarlane, D. R. 1986. Devitrification in glass-forming aqueous solutions. Cryobiol. 23:230–244.

    Article  Google Scholar 

  • MacFarlane, D. R. 1987. Physical aspects of vitrification in aqueous solutions. Cryobiol. 24:181–195.

    Article  Google Scholar 

  • Margaritis, L. H., F. C. Kaftos, and W. H. Petri. 1980. The eggshell of Drosophila melanogaster I. Fine structure of the layers and regions of the wild-type eggshell. J. Cell Sci. 43:1–35.

    Google Scholar 

  • Mathias, S. F., F. Franks, and K. Trafford. 1984. Nucleation and growth of ice in deeply undercooled erythrocytes. Cryobiol. 21:123–130.

    Article  Google Scholar 

  • Mathias, S. F., F. Franks, and R. H. M. Hatley. 1985. Preservation of viable cells in the undercooled state. Cryobiol. 22:537–546.

    Article  Google Scholar 

  • Mazur, P. 1977. The role of intracellular freezing in the death of cells. Cryobiol. 14:251–272.

    Article  Google Scholar 

  • Mazur, P., U. Schneider, K. B. Jacobson, and A. P. Mahowald. 1988. Chilling injury in intact Drosophila eggs at various stages of embryonic development between 0 and -25°C in the absence of ice formation. Cryobiol. 25:544.

    Article  Google Scholar 

  • Mitchison, T. J. and J. Sedat. 1983. Localization of antigenic determinants in whole Drosophila embryos. Dev. Biol. 99:261–264.

    Article  Google Scholar 

  • Morris, G.J. 1987. Direct chilling injury. In The Effects of Low Temperatures on Biological Systems, eds. B. W. W. Grout and G. J. Morris, pp. 120–146. Edward Arnold, London.

    Google Scholar 

  • Myers, S. P., D. V. Lynch, S. P. Myers, R. E. Pitt, and P. L. Steponkus. 1987. Cryobiology of Drosophila embryos. Cryobiol. 24:549.

    Article  Google Scholar 

  • Myers, S. P., D. V. Lynch, D. C. Knipple, S. P. Leibo, and P. L. Steponkus. 1988a. Low temperature sensitivity of Drosophila melanogaster embryos. Cryobiol. 25:544–545.

    Article  Google Scholar 

  • Myers, S. P., T. T. Lin, R. E. Pitt, and P. L. Steponkus. 1988b. Tolerance of Drosophila melanogaster embryos to ethylene glycol. Cryobiol. 25:545.

    Article  Google Scholar 

  • Myers, S. P., R. E. Pitt, D. V. Lynch, and P. L. Steponkus. 1989a. Characterization of intracellular ice formation in Drosophila melanogaster embryos. Cryobiol. 26:472–484.

    Article  Google Scholar 

  • Myers, S. P., T. T. Lin, R. E. Pitt, and P. L. Steponkus. 1989b. Tolerance of Drosophila melanogaster embryos to permeating cryoprotectants. Cryobiol. 26:550.

    Article  Google Scholar 

  • Pitt, R. E. and P. L. Steponkus. 1989. Quantitative analysis of the probability of intracellular ice formation during freezing of isolated protoplasts. Cryobiol. 26:44–63.

    Article  Google Scholar 

  • Pitt, R. E., T. T. Lin, S. P. Myers, and P. L. Steponkus. 1989. Intracellular ice formation in Drosophila melanogaster embryos: implications for conventional cryopreservation. Cryobiol. 26:550.

    Article  Google Scholar 

  • Rall, W. F. and G. M. Fahy. 1985. Ice-free cryopreservation of mouse embryos at -196°C by vitrification. Nature 313:573–575.

    Article  Google Scholar 

  • Rasmussen, D. H., M. N. MacCauley, and A. P. MacKenzie. 1975. Supercooling and nucleation of ice in single cells. Cryobiol. 12:328–339.

    Article  Google Scholar 

  • Steponkus, P. L. 1984. Role of the plasma membrane in freezing injury and cold acclimation. Annu. Rev. Plant Physiol. 35:543–584.

    Article  Google Scholar 

  • Steponkus, P. L., M. F. Dowgert, J. R. Ferguson, and R.L. Levin. 1984. Cryomicroscopy of isolated plant protoplasts. Cryobiol. 21:209–233.

    Article  Google Scholar 

  • Steponkus, P. L., S. P. Myers, D. V. Lynch, L. Gardner, V. Bronshteyn, S. P. Leibo, W. F. Rall, R. E. Pitt, T.-T. Lin and R. J. Maclntyre. 1990. Cryopreservation of Drosophila melanogaster embryos. Nature 345:170–172.

    Article  Google Scholar 

  • Widmer, B. and W. J. Gehring. 1973. A method for permeabilization of Drosophila eggs. DIS 51:149.

    Google Scholar 

Download references

Authors

Editor information

Richard E. Lee Jr. David L. Denlinger

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Chapman and Hall

About this chapter

Cite this chapter

Steponkus, P.L. et al. (1991). Cryobiology of Drosophila Melanogaster Embryos. In: Lee, R.E., Denlinger, D.L. (eds) Insects at Low Temperature. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0190-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0190-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0192-0

  • Online ISBN: 978-1-4757-0190-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics