Skip to main content

Behavioral and Physiological Adaptations to Cold in a Freeze-Tolerant Arctic Insect

  • Chapter
Insects at Low Temperature

Abstract

Insects inhabiting the polar and temperate zones commonly overwinter in diapause or quiescent states (Tauber et al., 1986). Although diapause has traditionally been implicated with cold hardiness, diapause is probably phylogeneti-cally unrelated to cold hardiness (see Chapter 8). Nevertheless, both diapause and cold hardiness are usually induced by the same environmental cues, such as temperature, photoperiod, thermoperiod, or nutrition (Beck, 1983). Despite the vast differences in environmental constraints between arctic and temperate bi-omes, cold-tolerant insects typical of these regions have adopted similar modes of overwintering: freeze tolerance or freeze avoidance. In response to a different set of environmental stimuli, have the arctic species evolved any mechanisms of overwintering that differ from their temperate relatives? Arctic insects that survive inclement winters and short summer seasons show adaptations to cold that are uncommon or unique to cold tolerant species (Miller, 1982). One such species is Gynaephora groenlandica.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, R. J., J. Fisher, and T. Loftus. 1988. Introduction to NMR Spectroscopy. Wiley, New York.

    Google Scholar 

  • Ayres, M. P. and S. F. MacLean. 1987. Development of birch leaves and the growth energetics of Epirrita autumnata (Geometridae). Ecology 68:558–468.

    Article  Google Scholar 

  • Baust, J. G. and R. R. Rojas. 1985. Review—insect cold-hardiness: Facts and fancy. J. Insect Physiol 31:755–759.

    Article  Google Scholar 

  • Beck, S. D. 1983. Insect thermoperiodism. Annu. Rev. Entomol. 28:91–108.

    Article  Google Scholar 

  • Bertram, G. C. L. 1935. The low temperature limit of activity of arctic insects. J. Anim. Ecol. 4:35–42.

    Article  Google Scholar 

  • Bliss, L. C., ed. 1977. Truelove Lowland, Devon Island, Canada: A High Arctic Ecosystem. University of Alberta Press, Edmonton.

    Google Scholar 

  • Brett, J. R. 1971. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka). Am. Zool. 11:99–113.

    Google Scholar 

  • Buchanan, G. W. and K. B. Storey. 1983. In vivo detection of cryoprotectants and lipids in overwintering larvae using carbon-13 NMR spectroscopy. Can. J. Cell. Biol. 61:1260–1264.

    Article  Google Scholar 

  • Campbell, R. W. 1981. Population dynamics. In The Gypsy Moth: Research Toward Integrated PestManagement, eds. C. C. Doane and M. L. McManus, pp. 65–214. US Department of Agriculture, Washington, DC.

    Google Scholar 

  • Chapin, F. S., J. D. McKendrick, and D. A. Johnson. 1986. Seasonal changes in carbon fractions in Alaskan tundra plants of differing growth form: Implications for herbivory. J. Ecol. 74:707–731.

    Article  Google Scholar 

  • Chen, C. -P., D. L. Denlinger, and R. E. Lee. 1987. Cold-shock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Physiol. Zool. 60:297–304.

    Google Scholar 

  • Chino, H. 1957a. Carbohydrate metabolism in diapause egg of the silkworm, Bombyx mori I. Diapause and the change in glycogen content. Embryologia 3:295–316.

    Article  Google Scholar 

  • Chino, H. 1957b. Conversion of glycogen to sorbitol and glycerol in the diapause egg of the Bombyx silkworm. Nature 180:606–607.

    Article  Google Scholar 

  • Chino, H. 1958. Carbohydrate metabolism in diapause eggs of the silkworm, Bombyx mori. II. Conversion of glycogen into sorbitol and glycerol during diapause. J. Insect Physiol. 2:1–12.

    Article  Google Scholar 

  • Crowe, J. H. and L. M. Crowe. 1982. Induction of anhydrobiosis: membrane changes during drying. Cryobiol. 19:317–328.

    Article  Google Scholar 

  • Danks, H. V. 1986. Insect plant interactions in arctic regions. Rev. Entomol. Quebec 31:52–75.

    Google Scholar 

  • Danks, H. V. 1981. Arctic Arthropods. A Review of Systematics and Ecology with Particular Reference to the North American Fauna. Entomological Society of Canada, Ottawa.

    Google Scholar 

  • Dawson, T. E. 1987. Comparative ecophysiological adaptations in arctic and alpine populations of a dioecious shrub, Salix árctica Pall. PhD Thesis, University of Washington, Seattle.

    Google Scholar 

  • Feeny, P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51:565–581.

    Article  Google Scholar 

  • Ferguson, D. C. 1978. Noctuoidea, Lymantriidae. In The Moths of North America North of Mexico, ed. R. B. Dominick, pp. 17–21. E. W. Classey and The Wedge Entomological Research Foundation, London.

    Google Scholar 

  • Gadian, D. G. 1982. Nuclear Magnetic Resonance and its Applications to Living Systems. Oxford University Press, London.

    Google Scholar 

  • Hamilton, W. J. 1973. Life’s Color Code. McGraw-Hill, New York.

    Google Scholar 

  • Haukioja, E., P. Hiemela, and S. Siren. 1985. Foliage phenols and nitrogen in relation to growth, insect damage, and ability to recover after defoliation in the mountain birch Betula pubescens spp tortuosa. Oecologia 65:214–222.

    Article  Google Scholar 

  • Hayakawa, Y. and H. Chino. 1982. Phosphofructokinase as a possible key enzyme regulating glycerol and trehalose accumulation in diapausing insects. Insect Biochem. 12:639–692.

    Article  Google Scholar 

  • Hochachka, P. W. and G. N. Somero. 1985. Biochemical Adaptation. Princeton University Press, Princeton.

    Google Scholar 

  • Keeley, L. L. 1981. Neuroendocrine regulation of mitochondrial development and function in the insect fat body. In Energy Metabolism in Insects, ed. R. G. H. Downer, pp. 207–239. Plenum. Press, New York.

    Chapter  Google Scholar 

  • Kevan, P. G., T. J. Jensen, and J. D. Shorthouse. 1982. Body temperatures and behavioral thermoregulation of high arctic wooly-bear caterpillars and pupae (Gynaephora rossii, Lymantriidae: Lepi-doptera) and the importance of sunshine. Arctic Alpine Res. 14:125–213.

    Article  Google Scholar 

  • Kevan, P. G. 1975. Sun tracking solar furnaces in high arctic flowers: significance for pollination and insects. Science 189:723–726.

    Article  Google Scholar 

  • Kevan, P. G. and J. D. Shorthouse. 1970. Behavioral thermoregulation by high arctic butterflies. Arctic 23:268–279.

    Google Scholar 

  • Knapp, R. and T. M. Casey. 1986. Thermal ecology, behavior, and growth of gypsy moth and eastern tent caterpillars. Ecology 67:598–608.

    Article  Google Scholar 

  • Krog, J. 1955. Notes on temperature measurements indicative of special organization in arctic and subarctic plants for utilization of radiated heat from the sun. Physiol. Plant. 8:836–839.

    Article  Google Scholar 

  • Kukal, O. 1984. Life history and adaptations of a high arctic insect, Gynaephora groenlandica (Wöcke) (Lepidoptera: Lymantriidae). MS thesis, University of Guelph, Guelph.

    Google Scholar 

  • Kukal, O. 1988. Behavioral and physiological adaptations to cold in a freeze tolerant high arctic insect, Gynaephora groenlandica (Wöcke) (Lepidoptera: Lymantriidae). PhD Thesis, University of Notre Dame, Notre Dame.

    Google Scholar 

  • Kukal, O. and P. G. Kevan. 1987. The influence of parasitism on the life history of a high arctic insect, Gynaephora groenlandica (Wöcke) (Lepidoptera: Lymantriidae). Can. J. Zool. 65:156–163.

    Article  Google Scholar 

  • Kukal, O., B. Heinrich and J. G. Duman. 1988a. Behavioral thermoregulation in the freeze tolerant arctic caterpillar, Gynaephora groenlandica. J. Exp. Biol. 138:181–193.

    Google Scholar 

  • Kukal, O., A. S. Serianni, and J. G. Duman. 1988b. Glycerol metabolism in a freeze-tolerant arctic insect: An in vivo 13-C NMR study. J. Comp. Physiol. B 158:175–183.

    Article  Google Scholar 

  • Kukal, O., Duman, J. G. and A. S. Serianni. 1989. Cold-induced mitochondrial degradation and cryoprotectant synthesis in freeze-tolerant arctic caterpillars. J. Comp. Physiol. 158:661–671.

    Google Scholar 

  • Kukal, O. and T. E. Dawson. 1989. Temperature and food quality influences on feeding behavior, assimilation efficiency and growth rate of arctic woolly-bear caterpillars. Oecologia 79:526–532.

    Article  Google Scholar 

  • Lee, R. E., C. -P. Chen, M. H. Meacham, and D. L. Denlinger. 1987. Ontogenetic patterns of cold-hardiness and glycerol production in Sarcophaga crassipalpis. J. Insect Physiol. 33:587–592.

    Article  Google Scholar 

  • MacLean, S. F. and T. S. Jensen. 1986. Food plant selection by insect herbivores in Alaskan arctic tundra: the role of plant life form. Oikos 44:211–221.

    Article  Google Scholar 

  • May, L. M. 1979. Insect thermoregulation. Annu. Rev. Entomol. 24:313–349.

    Article  Google Scholar 

  • McEvoy, P. B. 1984. Increase in respiratory rate during feeding in larvae of the cinnabar moth Tyria jacobaese. Physiol. Entomol. 9:191–195.

    Article  Google Scholar 

  • Meyer, S. G. E. 1980. Studies on anaerobic glucose and glutamate metabolism in larvae of Callitroga macellaria. Insect Biochem. 10:449–455.

    Article  Google Scholar 

  • Meyer, S. G. E. 1978. Effects of heat, cold, anaerobiosis and inhibitors on metabolite concentrations in larvae of Callitroga macellaria. Insect Biochem. 6:471–477.

    Google Scholar 

  • Miller, L. K. 1982. Cold-hardiness strategies of some adult and immature insects overwintering in interior Alaska. Comp. Biochem. Physiol. 73:595–604.

    Article  Google Scholar 

  • Montgomery, M.E. 1982. Life-cycle nitrogen budget for the gypsy moth, Lymantria dispar, reared on artificial diet. J. Insect Physiol. 28:437–442.

    Article  Google Scholar 

  • Price, P. W., C. E. Bouton, P. Gross, B. A. McPherson, J. N. Thompson, and A. E. Weiss. 1980. Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11:41–65.

    Article  Google Scholar 

  • Price, P. W., H. Roininen, and J. Tahvanainen. 1987a. Plant age and attack by the bud galler, Euura mucronata. Oecologia 73:334–337.

    Article  Google Scholar 

  • Price, P. W., H. Roininen, and J. Tahvanainen. 1987b. Why does the budgalling sawfly, Euura mucronata attack long shoots? Oecologia 74:1–6.

    Article  Google Scholar 

  • Regal, P. J. 1967. Voluntary hypothermia in reptiles. Science 155:1551–1553.

    Article  Google Scholar 

  • Rosenthal, G. A. and D. H. Janzen. 1979. Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • Schaefer, J., K. J. Dramer, J. R. Garbow, G. S. Jacob, E. O. Stejskal, T. L. Hopkins, and R. D. Speirs. 1987. Aromatic cross-links in insect cuticle: detection by solid-state 13-C and 15-N NMR. Science 235:1200–1204.

    Article  Google Scholar 

  • Scholander, P. F., W. Flagg, R. J. Hoch, and L. Irving. 1953. Climatic adaptation in arctic and tropical poikilotherms. Physiol. Zool. 26:67–92.

    Google Scholar 

  • Scholander, P. F., W. Flagg, R. J. Hoch, and L. Irving. 1954. Studies on the physiology of frozen plants and animals in the arctic. J. Cell. Comp. Physiol. 49:1–56.

    Article  Google Scholar 

  • Scriber, J. M. and F. Slansky, Jr. 1981. The nutritional ecology of immature insects. Annu. Rev. Entomol. 26:183–211.

    Article  Google Scholar 

  • Slansky, F. Jr. and J. M. Scriber. 1985. Food consumption and utilization. In Comprehensive Insect Physiology, Vol. 4, eds. G. A. Kerkut and L. I. Gilbert, pp. 87–163. Pergamon Press, Oxford.

    Google Scholar 

  • Sømme, L. 1974. Anaerobiosis in some alpine Coleóptera. Norsk. Entomol. Tidsskr. 21:155–158.

    Google Scholar 

  • Sømme, L. 1964. Effects of glycerol on cold-hardiness in insects. Can. J. Zool. 42:87–101.

    Article  Google Scholar 

  • Storey, K. B. 1983. Metabolism and bound water in overwintering insects. Cryobiol. 20:365–379.

    Article  Google Scholar 

  • Storey, K. B. and J. M. Storey. 1988. Freeze tolerance in animals. Physiol. Rev. 68:27–84.

    Google Scholar 

  • Storey, K. B., M. Micelli, K. W. Butler, I. C. P. Smith, and R. Deslauriers. 1984. 31-P NMR studies of the freezing tolerant larvae of the gall fly, Eurosta solidaginis. Eur. J. Biochem. 152:591–595.

    Article  Google Scholar 

  • Svoboda, J. and B. Freedman, eds. 1989. Ecology of a High Arctic Lowland Oasis, Alexandria Fiord (78°53’N, 75°55’W), Ellesmere Island, N.W.T., Canada. University of Toronto Press, Toronto.

    Google Scholar 

  • Tauber, M. J., C. A. Tauber, and S. Masaki. 1986. Seasonal Adaptations of Insects. Oxford University Press, New York.

    Google Scholar 

  • Tsumuki, H. and K. Kanehisa. 1981. The fate of 14-C glycerol in the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). Appl. Entomol. Zool. 16:200–208.

    Google Scholar 

  • Wyatt, G. R. and G. F. Kalf. 1958. Organic components of insect hemolymph. Proceedings of the 10th International Congress on Entomology, Vol. 2, p. 33.

    Google Scholar 

  • Wyatt, G. R. and W. L. Meyer. 1959. The chemistry of insect hemolymph III. Glycerol. J. Gen. Physiol. 42:1005–1011.

    Article  Google Scholar 

  • Yancey, P. H., M. E. Clark, S. C. Hank, R. D. Bowlus, and G. N. Somero. 1982. Living with water Stress: evolution of osmolyte systems. Science 217:1214–1222.

    Article  Google Scholar 

  • Yi, S., C. Yin, and J. H. Nordin. 1987. The chilling induced biosynthesis and secretion of glycerol by Ostrinia nubilalis larval fat bodies in vitro. J. Insect Physiol. 33:523–528.

    Article  Google Scholar 

  • Zachariassen, K. E. 1985. Physiology of cold tolerance in insects. Phys. Rev. 65:799–832.

    Google Scholar 

  • Zachariassen, K. E., ed. 1982. Special section: Cold-hardiness in Poikilothermic animals. Comp. Biochem. Physiol. 73:517–593.

    Article  Google Scholar 

  • Zachariassen, K. E. 1979. The mechanism of the cryoprotective effect of gylcerol in beetles tolerant to freezing. J. Insect Physiol. 25:29–32.

    Article  Google Scholar 

  • Ziegler, R. and K. Roth. 1985. 13-C NMR spectroscopy of larvae of Manduca sexta in vivo. Nature 72:206–207.

    Google Scholar 

Download references

Authors

Editor information

Richard E. Lee Jr. David L. Denlinger

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Chapman and Hall

About this chapter

Cite this chapter

Kukal, O. (1991). Behavioral and Physiological Adaptations to Cold in a Freeze-Tolerant Arctic Insect. In: Lee, R.E., Denlinger, D.L. (eds) Insects at Low Temperature. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0190-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0190-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0192-0

  • Online ISBN: 978-1-4757-0190-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics