Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 166))

Abstract

The light scattering work on pyroelectric BaMnF4 is reassessed here in view of new structural information on the incommensurate phase. The dispersions in the acoustic phonon velocities Vcb and Vcc are ascribed to coupling to the phason and amplitudon, respectively; the failure to observe a true soft mode in the Raman spectrum for T < Ti ≃ 247 K is attributed to the overdamped nature of the amplitudon even for T ≃ 85 K; the static central peak is associated with symmetry breaking frozen defects; and the dynamic central peak previously thought to be due to the phason is now assigned to LA-phonon — amplitudon coupling. Thus the light scattering experiments have provided no direct evidence for phasons or amplitudons. It is suggested that Brillouin scattering experiments should be performed on incommensurate ThBr4, which is a very simple system with small phason and amplitudon damping, to search for the overdamped phason and predicted amplitudon — acoustic-phonon coupling. Finally, it is demonstrated that quasiperiodic superlattices provide exciting possibilities for detailed comparisons between theory and experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See the review by T. Matsubara, Jpn. J. Appl. Phys. 24, suppl. 24-2, 1 (1985).

    Article  Google Scholar 

  2. J. Petzelt, Phase Transitions 2, 155 (1981).

    Article  Google Scholar 

  3. H. Z. Cummins and A. P. Levanyuk, eds., “Light Scattering Near Phase Transitions” (North-Holland, Amsterdam, 1983).

    Google Scholar 

  4. V. A. Golovko and A. P. Levanyuk, Sov.-Phys. JETP 54, 1217 (1981).

    Google Scholar 

  5. R. Zeyher and W. Finger, Phys. Rev. Lett. 49, 1833 (1982).

    Article  ADS  Google Scholar 

  6. V. A. Golovko and A. P. Levanyuk in Ref. 3, Chapt. 3.

    Google Scholar 

  7. R. V. Pisarev, B. B. Krichevtzov, P. A. Markovin, O. Yu. Korshunov and J. F. Scott, Phys. Rev. B28, 2667 (1983).

    ADS  Google Scholar 

  8. T. W. Ryan, J. Phys. C19, 1097 (1986).

    ADS  Google Scholar 

  9. P. Saint-Grégoire, R. Almairac, A. Freund and J. Y. Gesland, Ferroelectrics 67, 15 (1986).

    Article  Google Scholar 

  10. See, for example, reviews by J. F. Scott in Rep. Prog. Phys. 12, 1055 (1979); Ferroelectrics 24, 127 (1980); in Ref. 3, Chapt. 5; and Ferroelectrics 66, 11 (1986).

    Article  ADS  Google Scholar 

  11. D. E. Cox, S. M. Shapiro, R. A. Cowley, M. Eibschütz and H. J. Guggenheim, Phys. Rev. B19, 5754 (1979).

    Article  ADS  Google Scholar 

  12. D. E. Cox, S. M. Shapiro, R. J. Nelmes, T. W. Ryan, H. J. Bleif, R. A. Cowley, M. Eibschütz and H. J. Guggenheim, Phys. Rev. B28, 1640 (1983).

    Article  ADS  Google Scholar 

  13. M. Barthès-Régis, R. Almairac, P. St-Grégoire, C. Filippini, U. Steigenberger, J. Nouet and Y. Gesland, J. Physique Lett. 44, L829 (1983).

    Article  Google Scholar 

  14. P. St-Grégoire, M. Barthes, R. Almairac, J. Nouet, J. Y. Gesland, C. Fillippini and U. Steigenberger, Ferroelectrics 53, 307 (1984).

    Article  Google Scholar 

  15. B. B. Lavrencic and J. F. Scott, Phys. Rev. B24, 2711 (1981).

    Article  ADS  Google Scholar 

  16. V. Dvorak and J. Fousek, Phys. Stat. Sol. A61, 99 (1980).

    Article  ADS  Google Scholar 

  17. J. F. Ryan and J. F. Scott, Solid State Commun. 14, 5 (1974) and in “Light Scattering in Solids,” M. Balkanski, R. C. C. Leite and S. P. S. Porto, eds. (Flammarion, Paris, 1976), p. 761

    Article  ADS  Google Scholar 

  18. V. V. Eremenko, A. P. Mokhir, Yu. A. Popkov and O. L. Reznitskaya, Ukr. Fiz. Zh. 20, 146 (1975).

    ADS  Google Scholar 

  19. Yu. A. Popkov, S. V. Petrov and A. P. Mokhir, Sov. J. Low Temp. Phys. 1, 91 (1975).

    Google Scholar 

  20. D. W. Bechtle and J. F. Scott, J. Phys. C. 10, L209 (1977).

    Article  ADS  Google Scholar 

  21. D. W. Bechtle, J. F. Scott and D. J. Lockwood, Phys. Rev. B18, 6213 (1978).

    Article  ADS  Google Scholar 

  22. K. B. Lyons and H. J. Guggenheim, Solid State Commun. 31, 285 (1979).

    Article  ADS  Google Scholar 

  23. A. F. Murray and D. J. Lockwood in “Proc. 7th Int. Conf. Raman Spectrosc”, W. F. Murphy, ed. (North-Holland, Amsterdam, 1980), p. 58.

    Google Scholar 

  24. K. B. Lyons, T. J. Negran and H. J. Guggenheim, J. Phys. C13, L415 (1980).

    ADS  Google Scholar 

  25. D. J. Lockwood, A. F. Murray and N. L. Rowell, J. Phys. C14, 753 (1981).

    ADS  Google Scholar 

  26. A. F. Murray, G. Brims and S. Sprunt, Solid State Commun. 39, 941 (1981).

    Article  ADS  Google Scholar 

  27. K. B. Lyons, R. N. Bhatt, T. J. Negran and H. J. Guggenheim, Phys. Rev. B25, 1791 (1982).

    Article  ADS  Google Scholar 

  28. A. D. Bruce and R. A. Cowley, J. Phys. C11, 3609 (1978).

    ADS  Google Scholar 

  29. See comments by J. F. Scott, in Ref. 3, Chapt. 5.

    Google Scholar 

  30. See the review by M. V. Klein, in Ref. 3, Chapt. 8.

    Google Scholar 

  31. A. A. Volkov, G. V. Kozlov, S. P. Lebedev, J. Petzelt and Y. Ishibashi, Ferroelectrics 45, 157 (1982).

    Article  Google Scholar 

  32. J. Petzelt and V. Dvorak, J. Phys. C9, 1587 (1976).

    ADS  Google Scholar 

  33. I. J. Fritz, Phys. Lett. 51A, 219 (1975).

    Article  ADS  Google Scholar 

  34. See J. F. Scott, Ferroelectrics 47, 33 (1983).

    Article  Google Scholar 

  35. W. Taylor, D. J. Lockwood and H. Vass, Solid State Commun. 27, 547 (1978).

    Article  ADS  Google Scholar 

  36. B. I. Halperin and C. M. Varma, Phys. Rev. B14, 4030 (1976).

    Article  ADS  Google Scholar 

  37. J. F. Scott, private communication.

    Google Scholar 

  38. T. W. Ryan, R. A. Cowley and S. R. Andrews, J. Phys. C19, L113 (1986).

    ADS  Google Scholar 

  39. The crystals were grown from zone melted materials by H. J. Guggenheim at Bell Laboratories.

    Google Scholar 

  40. L. Bernard, R. Currat, P. Delamoye, C. M. E. Zeyen, S. Hubert and R. de Kouchkovsky, J. Phys. C16, 433 (1983).

    ADS  Google Scholar 

  41. C. M. E. Zeyen, Physica 120B, 283 (1983).

    Google Scholar 

  42. S. Hubert, P. Delamoye, S. Lefrant, M. Lepostollec and M. Hussonnois, J. Solid State Chem. 36, 36 (1981).

    Article  ADS  Google Scholar 

  43. R. Merlin, K. Bajema, R. Clarke, F.-Y. Juang and P. K. Bhattacharya, Phys. Rev. Letters 55, 1768 (1985).

    Article  ADS  Google Scholar 

  44. See the article by R. Clarke in these Proceedings, p. 357.

    Google Scholar 

  45. M. W. C. Dharmawardana, D. J. Lockwood, J.-M. Baribeau and D. C. Houghton, Phys. Rev. B34, 3034 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Lockwood, D.J. (1987). Light Scattering from Incommensurate Insulators; Mainly BaMnF4. In: Scott, J.F., Clark, N.A. (eds) Incommensurate Crystals, Liquid Crystals, and Quasi-Crystals. NATO ASI Series, vol 166. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-0184-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0184-5_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-0186-9

  • Online ISBN: 978-1-4757-0184-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics