Skip to main content

Coincidence and Near-Coincidence Grain Boundaries in HCP Metals

  • Chapter
Book cover The Nature and Behavior of Grain Boundaries

Abstract

Coincidence concepts, commonly used in treating the structures of grain boundaries in cubic metals, are used to develop coincidence structural-unit models for grain boundaries in hcp metals. In doing this the concept of coincidence is extended to one of near- coincidence, in which the shared atoms at the boundary need not occupy exact coincidence sites but instead occupy compromise positions between two nearly coincidence lattice sites. This extension allows one to define near-coincidence-site lattices (near-CSL’s) from which are derived short-period near-coincidence structural units. Exact and near-CSL’s in the common hcp metals are tabulated for rotations about [0001], <1010>, and <1120>, and short-period coincidence structural units are presented. Geometric models of a variety of symmetric and asymmetric <1010> tilt boundaries are developed as examples to show how a relatively few coincidence structural units are combined in the structures of both simple and complex boundaries. Although hcp boundaries are treated here, the approach is quite general and can be applied to any crystal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Hargreaves and R. J. Hills, J. Inst. Met. 41, 257 (1929).

    Google Scholar 

  2. M. L. Kronberg and F. H. Wilson, Trans. AIME 185, 501 (1949).

    Google Scholar 

  3. K. T. Aust and J. W. Rutter, in Recovery and Recrvstallization of Metals, ed. by L. Himmel, Interscience (1963), p.131.

    Google Scholar 

  4. J. W. Rutter and K. T. Aust, Acta Met. 13, 181 (1965).

    Article  CAS  Google Scholar 

  5. B. B. Rath and Hsun Hu, Trans.TMS-AIME 236, 1193 (1966).

    CAS  Google Scholar 

  6. K. T. Aust and J. W. Rutter, Trans. TMS-AIME 218, 1023 (1960).

    CAS  Google Scholar 

  7. K. T. Aust, Trans. TMS-AIME 221, 758 (1961).

    CAS  Google Scholar 

  8. K.T. Aust. in Surfaces and Interfaces I, Proceedings of the 13th Army Materials Research Conference, ed. by Burke et al., Syracuse Univ. Press (1967), p. 435.

    Chapter  Google Scholar 

  9. D. G. Brandon, B. Ralph, S. Ranganathan, and M. S. Wald, Acta Met. 12, 813 (1964).

    Article  Google Scholar 

  10. D. G. Brandon, Acta Met. 14, 1479 (1966).

    Article  CAS  Google Scholar 

  11. G. H. Bishop and B. Chalmers, Scripta Met. 2, 133 (1968).

    Article  Google Scholar 

  12. G. H. Bishop and B. Chalmers, Phil. Mag. 24, 515 (1971).

    Article  CAS  Google Scholar 

  13. B. Chalmers and H. Gleiter, Phil. Mag. 23, 1541 (1971).

    Article  CAS  Google Scholar 

  14. H. Gleiter, Phys. Stat. Sol. (b) 45, 9 (1971).

    Article  CAS  Google Scholar 

  15. W. T. Read and W. Shockley, Phys. Rev. 78, 275 (1950).

    Article  CAS  Google Scholar 

  16. W. Bollmann, Crystal Defects and Crystal Interfaces, Springer-Verlag, New York, Heidelberg and Berlin (1970), p.209.

    Book  Google Scholar 

  17. T. Schober and R. W. Balluffi, Phil. Mag. 21, 109 (1970).

    Article  Google Scholar 

  18. T. Schober and R. W. Balluffi, Phys. Stat. Sol. (b). 44, 103 (1971).

    Article  CAS  Google Scholar 

  19. M. Weins, H. Glieter, and B. Chalmers, J. Appl. Phys. 42, 2639 (1971).

    Article  CAS  Google Scholar 

  20. G. H. Bishop and G. A. Bruggeman, J. of Mat. Sci. (in press).

    Google Scholar 

  21. G. C. Hasson, J. B. Guillot, B. Baroux and C. Goux, Phys. Stat. Sol. (a) 2, 551 (1970).

    Article  CAS  Google Scholar 

  22. P. H. Pumphrey and K. M. Bowkett, Scripta Met. 5, 365 (1971).

    Article  Google Scholar 

  23. S. Ranganathan, Acta Cryst. 21, 197 (1966).

    Article  CAS  Google Scholar 

  24. G. A. Bruggeman, G. H. Bishop and W. H. Hartt, “Coincidence Structural-Unit Models for Grain Boundaries” AMMRC TR 72–7, February 1972.

    Google Scholar 

  25. G. H. Bishop, W. H. Hartt and G. A. Bruggeman, Acta Met. 19, 37 (1971).

    Article  CAS  Google Scholar 

  26. W. H. Hartt, G. H. Bishop, and G. A. Bruggeman, J. of Metals 21, 124 A (1969).

    Google Scholar 

  27. B. Loberg, H. Norden, and D. A. Smith, Phil. Mag. 24, 897 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 American Institute of Mining, Metallurgical and Petroleum Engineers, Inc.

About this chapter

Cite this chapter

Bruggeman, G.A., Bishop, G.H., Hartt, W.H. (1972). Coincidence and Near-Coincidence Grain Boundaries in HCP Metals. In: Hu, H. (eds) The Nature and Behavior of Grain Boundaries. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-0181-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0181-4_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-0183-8

  • Online ISBN: 978-1-4757-0181-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics