Is Dopamine a Neurotransmitter within the Ventral Pallidum/Substantia Innominata?

  • T. Celeste Napier
  • Mary Beth Muench
  • Renata J. Maslowski
  • George Battaglia
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 295)


In a classic treatise titled “Criteria for Identification of a Central Nervous System Transmitter” (1966), R. Werman provided a basis by which a chemical found in the brain could be classified as involved in the communication from one nerve cell to another. As listed in Werman’s paper, the criteria are:

“The Criterion of the Inactivating Enzyme.

The Criterion of the Presence of the Transmitter.

The Criterion of Collectability of the Transmitter.

The Criterion of the Synthesizing Enzyme.

The Criterion of the Presence of Precursors.

The Criterion of a Specific Release Mechanism.

The Criterion of Identical Actions.

The Criterion of Pharmacological Identity.”


Tyrosine Hydroxylase Nucleus Accumbens Ventral Tegmental Area Basal Forebrain Ventral Pallidum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aston-Jones G., Shaver R., and Dinan T.G., 1985, Nucleus basalis neurons exhibit axonal branching with decreased impulse conduction velocity in rat cerebrocortex. Brain Res., 325:271.PubMedCrossRefGoogle Scholar
  2. Barchas, J.D., Akil, H., Elliott, G.R., Holman, R.B., and Watson, S.J., 1978, Behavioral neurochemistry: Neuroregulators and behavioral states, Science., 200:964.PubMedCrossRefGoogle Scholar
  3. Beatty W.W., and Rush J.R., 1983, Spatial working memory in rats: Effects of monoaminergic antagonists, Pharmacol. Biochem. Behav., 18:7.PubMedCrossRefGoogle Scholar
  4. Beckstead R.M., 1988, Association of dopamine D1 and D2 receptors with specific cellular elements in the basal ganglia of the cat: The uneven topography of dopamine receptors in the striatum is determined by intrinsic striatal cells, not nigrostriatal axons, Neuroscience. 27:851.PubMedCrossRefGoogle Scholar
  5. Beckstead R.M., Wooten G.F., and Trugman J.M., 1988, Distribution of D1 and D2 dopamine receptors in the basal ganglia of the cat determined by quantitative autoradiography, J. Compar. Neurol., 268:131.CrossRefGoogle Scholar
  6. Besson M.-J., Graybiel A.M., and Nastuk M.A., 1988, [3H]SCH 23390 binding to D1 dopamine receptors in the basal ganglia of the cat and primate: Delineation of striosomal compartments and pallidal and nigral subdivisions, Neuroscience., 26:101.PubMedCrossRefGoogle Scholar
  7. Bloom, F.E., Costa, E., and Salmoiraghi, G.C., 1965, Anesthesia and the responsiveness of individual neurons of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administered by microelectrophoresis, J. Pharm. Exp. Therap., 150:244.Google Scholar
  8. Camps M., Cortes R., Gueye B., Probst A., and Palacios J.M., 1989a Dopamine receptors in human brain: Autoradiographic distribution of D2 sites, Neuroscience, 28:275.PubMedCrossRefGoogle Scholar
  9. Camps M., Kelly P.H., and Palacios, J.M., 1989b, Autoradiographic localization of dopamine D1 and D2 receptors in the brain of several mammalian species, J. Neural. Transm., 80:105.CrossRefGoogle Scholar
  10. Carnoy P., Ravard S., Wemerman B., Soubrie P.H, Simon P., 1986, Behavioral deficits induced by low doses of apomorphine in rats: Evidence for a motivational and cognitive dysfunction which discriminates among neuroleptic drugs, Pharmacol. Biochem. Behav., 25:503.PubMedCrossRefGoogle Scholar
  11. Connor, J.D., 1970, Caudate nucleus neurones: Correlation of the effects of substantia nigra stimulation with iontophoretic dopamine, J. Physiol., 208:691.PubMedGoogle Scholar
  12. Contreras P.C., Quirion R., Gehlert D.R., Contreras M.L., and O’Donohue T.L., 1987, Autoradiographic distribution of non-dopaminergic binding sites labeled by [3H] haloperidol in rat brain, Neurosci. Lett., 75:133.PubMedCrossRefGoogle Scholar
  13. Cortes R., Gueye B., Pazos A., Probst A., and Palacios J.M., 1989, Dopamine receptors in human brain: Autoradiographic distribution of D1 sites, Neuroscience. 23:263.CrossRefGoogle Scholar
  14. Dawson T.M., Barone P., Sidhu A., Wamsley J.K., and Chase T.N., 1986, Quantitative autoradiographic localization of D-1 dopamine receptors in the rat brain: Use of the iodinated ligand [1251]SCH23390. Neurosci. Lett., 68:261.PubMedCrossRefGoogle Scholar
  15. DeLong M.R., 1971, Activity of pallidal neurons during movement, J. Neurophysiol., 34:414.PubMedGoogle Scholar
  16. Deutch A.Y., Goldstein M., Saldino F., Roth R.H., 1988, Telencephalic projections of the A8 dopamine cell group, in: “The Mesocorticolimbic Dopamine System, Annals of the New York Academy of Sciences”, Vol. 537, P.W. Kalivas, and C.B. Nemeroff, eds., New York: The New York Academy of Sciences, p 27.Google Scholar
  17. Fallon J.H., Moore R.Y., 1978, Catecholamine innervation of the basal forebrain IV. Topography of the dopamine projection to the basal forebrain and neostriatum, J. Comp. Neurol., 180:545.PubMedCrossRefGoogle Scholar
  18. Fibiger, H.C., Damsma, G. and Day, J.C. 1991, Behavioral pharmacology and biochemistry of central cholinergic neurotransmission, in: “The Basal Forebrain: Anatomy to Function: Advances in Experimental Medicine and Biology”, T.C. Napier, P.W. Kalivas, I. Hanin, eds. New York, Plenum Publishing Corporation, in press.Google Scholar
  19. Gehlert D.R., and Wamsley J.K., 1985, Dopamine receptors in the rat brain: Quantitative autoradiographic localization using [3H]sulpiride. Neurochem. Int., 7:717.PubMedCrossRefGoogle Scholar
  20. Geula C., and Slevin J.T., 1989, Substantia nigra 6-hydroxydopamine lesions alter dopaminergic synaptic markers in the nucleus basalis magnocellularis and striatum of rats. Synapse. 4:248.PubMedCrossRefGoogle Scholar
  21. Grove E.A., 1988, Neural associations of the substantia innominata in the rat: afferent connections, J. Comp. Neurol., 277:315.PubMedCrossRefGoogle Scholar
  22. Haring J.H., and Wang R.Y., 1986, The identification of some sources of afferent input to the rat nucleus basalis magnocellularis by retrograde transport of horseradish peroxidase. Brain Res., 366:152.PubMedCrossRefGoogle Scholar
  23. Hubner C.B., and Koob G.F., 1990, The ventral pallidum plays a role in mediating cocaine and heroin self-administration in the rat. Brain Res. 508:20.PubMedCrossRefGoogle Scholar
  24. Huston J.P., Kiefer S., Buscher W., and Monoz C., 1987, Lateralized functional relationship between the preoptic area and lateral hypothalamic reinforcement. Brain Res. 436:1.PubMedCrossRefGoogle Scholar
  25. Jones B.E., and Cuello A.C., 1989, Afferents to the basal forebrain cholinergic cell area from pontomesencephalic-catecholamine, serotonin, and acetylcholine-neurons, Neuroscience. 31:37.PubMedCrossRefGoogle Scholar
  26. Jones D.L., and Mogenson G.J., 1980, Nucleus accumbens to globus pallidus GABA projection subserving ambulatory activity, Amer. J. Physiol., 238:R65-R69.PubMedGoogle Scholar
  27. Lamour Y., Dutar P., Rascol O., and Jobert A., 1986, Basal forebrain neurons projecting to the rat frontoparietal cortex: Electrophysiological and pharmacological properties. Brain Res., 362:122.PubMedCrossRefGoogle Scholar
  28. Lindvall, O., and Bjorklund, A., 1974, The organization of the ascending catecholamine neuron systems in the rat brain, ACTA Physiol. Scand., Supp. 412:1.Google Scholar
  29. Lindvall O., and Bjorklund A., 1979, Dopaminergic innervation of the globus pallidus by collaterals from the nigrostriatal pathway. Brain Res., 172:169.PubMedCrossRefGoogle Scholar
  30. Linseman M.A., 1974, Inhibitory unit activity of the ventral forebrain during both appetitive and aversive Pavlovian conditioning. Brain Res., 80:146.PubMedCrossRefGoogle Scholar
  31. Martinez-Murillo R., Semenenko F., and Cuello A.C., 1988, The origin of tyrosine hydroxylase-immunoreactive fibers in the regions of the nucleus basalis magnocellularis of the rat. Brain Res., 451:227.PubMedCrossRefGoogle Scholar
  32. Maslowski, R.J., and Napier, T.C., 1991, Dopamine D1 and D2 agonists induce opposite changes in the firing rate of ventral pallidal neurons, Eur. J. Pharmacol., in press.Google Scholar
  33. McGeer P.L., McGeer E.G., Kimura H., and Peng J.-F., 1986, Cholinergic neurons and cholinergic projections in the mammalian CNS, in: “Dynamics of Cholinergic Function: Advances in Behavioral Biology”, Vol 30, I. Hanin, ed., Plenum Press: New York p 11.Google Scholar
  34. McGurk S.R., Levin E.D. and Butcher L.L., 1988, Cholinergic-dopaminergic interactions in radial-arm maze performance, Behav. Neural Biol., 49:234.PubMedCrossRefGoogle Scholar
  35. Mogenson G.J., Jones, D.L., and Yim, C.Y., 1980, From motivation to action: functional interface between the limbic system and the motor system, Prog. Neurobiol., 14:69.PubMedCrossRefGoogle Scholar
  36. Mogenson G.J., and Yang C.R., 1991, The contribution of basal forebrain to limbic-motor integration and the mediation of motivation to action, in: “The Basal Forebrain: Anatomy to Function: Advances in Experimental Medicine and Biology”, T.C. Napier, P.W. Kalivas, I. Hanin, eds, New York, Plenum Publishing Corporation, in press.Google Scholar
  37. Mora F., Rolls E.T., and Burton M.J., 1976, Modulation during learning of the responses of neurons in the lateral hypothalamus to the sight of food, Exp. Neurol., 53:508.PubMedCrossRefGoogle Scholar
  38. Napier T.C., and Potter P.P., 1989, Dopamine in the rat ventral pallidum/substantia innominata: Biochemical and electrophysiological studies, Neuropharmacology., 28:757.PubMedCrossRefGoogle Scholar
  39. Napier, T.C., Simson, P.E. andGivens, B.S., 1991, Dopamine electrophysiology of ventral pallidal/substantia innominata neurons: Comparison with the dorsal globus pallidus. J. Pharmacol. Exp. Therap. in press.Google Scholar
  40. Olton D., Markowska A., Voytko M.L., Givens B., Gorman L., and Wenk G., 1990, Basal forebrain cholinergic system: A functional analysis, in: “The Basal Forebrain: Anatomy to Function: Advances in Experimental Medicine and Biology”, T.C. Napier, P.W. Kalivas, I. Hanin eds. New York: Plenum Publishing Corporation, in press.Google Scholar
  41. Pirch J.H., 1977a, Effects of amphetamine and chlorpromazine on brain slow potentials in the rat, Pharmacol. Res. Comm., 9:669.CrossRefGoogle Scholar
  42. Pirch J.H., 1977b, Amphetamine effects on brain slow potentials associated with discrimination in the rat, Pharmacol. Biochem. Behav., 6:697.PubMedCrossRefGoogle Scholar
  43. Pirch J.H., 1980, Effects of dextroamphetamine on event-related potentials in rat cortex during a reaction time task. Neuropharmacology., 19:365.PubMedCrossRefGoogle Scholar
  44. Pirch, J.H. and Corbus, M.J., 1983, Haloperidol antagonism of amphetamine-induced effects on event-related slow potentiate from rat cortex. Int. J. Neurosci., 18:137.PubMedCrossRefGoogle Scholar
  45. Pirch J.H., Corbus M.J., and Napier T.C., 1981a, Auditory cue preceding intracranial stimulation induces event-related potential in rat frontal cortex: Alterations by amphetamine. Brain Res. Bull., 7:799.CrossRefGoogle Scholar
  46. Pirch J.H., Corbus M.J., Rigdon G.C., and Lyness W.H., 1986, Generation of cortical event-related slow potentials in the rat involves nucleus basalis cholinergic innervation, Electroencephalogr. Clin. Neurophysiol., 63:464.PubMedCrossRefGoogle Scholar
  47. Pirch J.H., Napier T.C., and Corbus M.J., 1981b, Brain stimulation as a cue for event-related potentials in rat cortex: Amphetamine effects. Int. J. Neurosci., 15:217.PubMedCrossRefGoogle Scholar
  48. Pirch, J.H., Rigdon, G.C., Rucker, H.K. and Turco, K, 1991, Basal forebrain modulation of cortical cell activity during conditioning, in: “The Basal Forebrain: Anatomy to Function: Advances in Experimental Medicine and Biology”, T.C. Napier, P.W. Kalivas, I. Hanin, eds, New York, Plenum Publishing Corporation, in press.Google Scholar
  49. Reiner P.B., Semba K., Fibiger H.C., and McGeer E.G., 1987, Physiological evidence for subpopulations of cortically projecting basal forebrain neurons in the anesthetized rat, Neuroscience. 20:629.PubMedCrossRefGoogle Scholar
  50. Richardson R.T., and DeLong M.R., 1986, Nucleus basalis of Meynert neuronal activity during a delayed response task in monkey. Brain Res. 399:364.PubMedCrossRefGoogle Scholar
  51. Richardson R.T., and DeLong, M.R., 1991, Electrophysiological studies of the functions of the nucleus basalis in primates, in: “The Basal Forebrain: Anatomy to Function: Advances in Experimental Medicine and Biology”, T.C. Napier, P.W. Kalivas, I. Hanin, eds., New York, Plenum Publishing Corporation, in press.Google Scholar
  52. Richfield E.K., Penney J.B., and Young A.B., 1989, Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system, Neuroscience. 30:767.PubMedCrossRefGoogle Scholar
  53. Rolls E.T., Burton M.J., and Mora F., 1980, Neurophysiological analysis of brain-stimulation reward in the monkey. Brain Res., 194:339.PubMedCrossRefGoogle Scholar
  54. Rolls E.T., Sanghera M.K., Roper-Hall A., 1979, The latency of activation of neurones in the lateral hypothalamus and substantia innominata during feeding in the monkey. Brain Res., 164:12.CrossRefGoogle Scholar
  55. Russchen F.T., Amaral D.G., and Price J.L., 1985, The afferent connections of the substantia innominata in the monkey, Macaca fascicularis, J. Comp. Neurol., 242:1.PubMedCrossRefGoogle Scholar
  56. Semba K., Reiner P.B., McGeer E.G., and Fibiger H.C., 1988, Brainstem afferents to the magnocellular basal forebrain studied by axonal transport, immunohistochemistry, and electrophysiology in the rat, J. Comp. Neurol., 267:433.PubMedCrossRefGoogle Scholar
  57. Voorn P., Jorritsma-Byham B., Van Dijk C., and Buijs R.M., 1986, The dopaminergic innervation of the ventral striatum in the rat: A light- and electron-microscopical study with antibodies against dopamine, J. Comp. Neurol., 267:433Google Scholar
  58. Werman, R., 1966, A review - Criteria for identification of a central nervous system transmitter. Comp. Biochem. Physiol., 18:745.PubMedCrossRefGoogle Scholar
  59. Wilson F.A.W., and Rolls E.T., 1990, Neuronal responses related to reinforcement in the primate basal forebrain. Brain Res., 509:213.PubMedCrossRefGoogle Scholar
  60. Wilson, F.A.W., 1991, The relationship between learning, memory and neuronal responses in the primate basal forebrain, in: “The Basal Forebrain: Anatomy to Function: Advances in Experimental Medicine and Biology”, T.C. Napier, P.W. Kalivas, I. Hanin, eds. New York, Plenum Publishing Corporation, in press.Google Scholar
  61. Wise R.A., 1980, The dopamine synapse and the notion of ‘pleasure centers’ in the brain. Trends in Neurosci., 3:91.CrossRefGoogle Scholar
  62. Woodruff, G.N., McCarthy P.S., and Walker R.J., 1976, Studies on the pharmacology of neurons in the nucleus accumbens of the rat, Brain Res., 11:233.CrossRefGoogle Scholar
  63. Yang C.R., and Mogenson G.J., 1989, Ventral pallidal neuronal responses to dopamine receptor stimulation in the nucleus accumbens. Brain Res., 489:237.PubMedCrossRefGoogle Scholar
  64. York D.H., 1970, Possible dopaminergic pathway from substantia nigra to putamen, Brain Res., 20:233.PubMedCrossRefGoogle Scholar
  65. Zaborszky L., 1989, Afferent connections of the forebrain cholinergic projection neurons, with special reference to monoaminergic and peptidergic fibers, in: “Central Cholinergic Synaptic Transmission” M. Frotscher, U. Misgeld, eds., Basel Switzerland: Birkhauser Verlag, p. 12.CrossRefGoogle Scholar
  66. Zaborszky, L., Luine, V.N., Cullinan, W.E., Allen, D.L., and Heimer, L., 1991, Direct catecholaminergic-cholinergic interactions in the basal forebrain: Morphological and biochemical studies, (submitted).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • T. Celeste Napier
    • 1
  • Mary Beth Muench
    • 1
  • Renata J. Maslowski
    • 1
  • George Battaglia
    • 1
  1. 1.Department of Pharmacology, Stritch School of MedicineLoyola University ChicagoMaywoodUSA

Personalised recommendations