Skip to main content

The Cholinergic Basal Forebrain: A Critical Role in Cortical Arousal

  • Chapter
The Basal Forebrain

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 295))

Abstract

Acetylcholine (ACh) has long been implicated in the regulation of arousal or wakefulness. However, the anatomical basis for this regulation had been missing because relatively little was known about the organization of central cholinergic pathways. During the last decade, however, specific immuno-histochemical markers became available, and by using these markers central cholinergic neurons have been mapped and their projections delineated (see Semba and Fibiger, 1989, for review). It is now well established that there are two major cholinergic projection systems in the CNS: cholinergic neurons in the basal forebrain project widely to the cerebral cortex, and those in the mesopontine tegmentum project heavily to the thalamus. Armed with these anatomical findings, researchers of behavioral state have begun to investigate the role of specific populations of central cholinergic neurons in the regulation of waking and sleep. One important conclusion which has emerged from such recent studies is that cholinergic neurons in the basal forebrain have a crucial role in cortical arousal. In the present paper, both anatomical and physiological evidence supporting this notion is discussed, and clues are explored as to how the activity of basal forebrain cholinergic neurons is regulated during different behavioral states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, P., and Andersson, S. A., 1965, “Physiological Basis of the Alpha Rhythm”, Appleton-Century-Crofts, New York.

    Google Scholar 

  • Asanuma, C., 1989, Axonal arborizations of a magnocellular basal nucleus input and their relation to the neurons in the thalamic reticular nucleus of rats, Proc. Nat. Acad. Sci. U.S.A., 86:4746–4750.

    Article  CAS  Google Scholar 

  • Azmitia, E. C., 1978, The serotonin-producing neurons of the midbrain median and dorsal raphe nuclei, in: “Handbook of Psychopharmacology, Vol. 9, Chemical Pathways in the Brain”, L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds., Plenum, New York, pp. 233–314.

    Google Scholar 

  • Bennett, T. L., 1971, Hippocampal theta activity and behavior-a review, Commun. Behav. Biol., 6:37–48.

    CAS  Google Scholar 

  • Bialowas, J., and Frotscher, M., 1987, Choline acetyltransferase-immunoreactive neurons and terminals in the rat septal complex: a combined light and electron microscopic study, J. Comp. Neurol., 259:298–307.

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki, G., Bickford, R. G., Ponomareff, G., Thai, L. J., Mandel, R., and Gage, F. H.-, 1988, Nucleus basalis and thalamic control of neocortical activity in the freely moving rat, J. Neurosci., 8:4007–4026.

    PubMed  CAS  Google Scholar 

  • Casamenti, F., Deffenu, G., Abbamondi, A. L., and Pepeu, G., 1986, Changes in cortical acetylcholine output induced by modulation of the nucleus basalis, Brain Res. Bull., 16:689–695.

    Article  PubMed  CAS  Google Scholar 

  • Chang, H. T., 1989, Noradrenergic innervation of the substantia innominata: a light and electron microscopic analysis of dopamine ß-decarboxylase immunoreactive elements in the rat, Exp. Neurol., 104:101–112.

    Article  PubMed  CAS  Google Scholar 

  • Chang, H. T., and Kuo, H., 1989, Adrenergic innervation of the substantia innominata: co-localization of phenylethanolamine N-methyltransferase and tyrosine hydroxylase immunoreactivities within the same axons. Brain Res., 503:350–353.

    Article  PubMed  CAS  Google Scholar 

  • Coben, L. A., Danziger, W., and Storandt, M., 1985, A longitudinal EEG study of mild senile dementia of Alzheimer type: changes at 1 year and at 2.5 years, Electroenceph. Clin. Neurophysiol., 61: 101–112.

    Article  PubMed  CAS  Google Scholar 

  • Collier, B., and Mitchell, J. F., 1967, The central release of acetylcholine during consciousness and after brain lesions, J. Physiol. (Lond.). 188:83–98.

    CAS  Google Scholar 

  • Detäri, L., Juhasz, G., and Kukorelli, T., 1984, Firing properties of cat basal forebrain neurones during sleep-wakefulness cycle, Electroenceph. Clin. Neurophysiol., 58:362–368.

    Article  PubMed  Google Scholar 

  • Detäri, L., Juhasz, G., and Kukorelli, T., 1987, Neuronal firing in the pallidal region: firing patterns during sleep-wakefulness cycle in cats, Electroenceph. Clin. Neurophysiol., 67:159–166.

    Article  PubMed  Google Scholar 

  • Detäri, L., and Vanderwolf, C. H., 1987, Activity of identified cortically projecting and other basal forebrain neurones during large slow waves and cortical activation in anaesthetized rats. Brain Res., 437:1–8.

    Article  PubMed  Google Scholar 

  • Detäri, L., Vanderwolf, C. H., and Kukorelli, T., J.990, Inhibitory connections in the basal forebrain: a possible explanation for the ambiguous role of BFA in the regulation of sleep and wakefulness, in: “The Diencephalon and Sleep”, M. Mancia and G. Marini, eds., Raven, New York, pp. 355–359.

    Google Scholar 

  • Donoghue, J. P., and Carroll, K. L., 1987, Cholinergic modulation of sensory responses in rat primary somatic sensory cortex. Brain Res., 408:367–371.

    Article  PubMed  CAS  Google Scholar 

  • El Mansari, M., Sakai, K., and Jouvet, M., 1989, Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats, Exp. Brain Res., 76:519–529.

    Article  PubMed  Google Scholar 

  • Fisher, R. S., Buchwald, N. A., Hull, C. D., and Levine, M. S., 1988, GABAergic basal forebrain neurons project to the neocortex: the localization of glutamic acid decarboxylase and choline acetyltransferase in feline corticopetal neurons, J. Comp. Neurol., 272:489–502.

    Article  PubMed  CAS  Google Scholar 

  • Freund, T. F., and Antal, M., 1988, GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature, 336:170–163.

    Article  PubMed  CAS  Google Scholar 

  • Griffith, W. H., Sim, J. A., and Matthews, R. T., 1991, Electrophysiologic characteristics of basal forebrain neurons in vitro, in “The Basal Forebrain: Anatomy to Function”, C. T. Napier, P. W. Kalivas, and I. Hanin, eds. Plenum, New York.

    Google Scholar 

  • Hallanger, A. E., Levey, A. I., Lee, H. J., Rye, D. B., and Wainer, B. H., 1987, The origin of cholinergic and other subcortical afferents to the thalamus in the rat, J. Comp. Neurol., 262:105–124.

    Article  PubMed  CAS  Google Scholar 

  • Hallanger, A. E., Price, S. D., Steininger, T., and Wainer, B. H., 1988, Mesopontine tegmental projections to the nucleus basalis of Meynert: an ultrastructural study, Soc. Neurosci. Abstr., 14:118

    Google Scholar 

  • Hallanger, A. E., and Wainer, B. H., 1988, Ascending projections from the pedunculopontine tegmental nucleus and the adjacent mesopontine tegmentum in the rat, J. Comp. Neurol., 274:483–515.

    Article  PubMed  CAS  Google Scholar 

  • Hu, B., Steriade, M., and Deschênes, M., 1989, The effects of brainstem peribrachial stimulation on perigeniculate neurons: the blockade of spindle waves, Neurosci., 31:1–12.

    Article  CAS  Google Scholar 

  • Jacobs, B. L., 1987, Brain monoaminergic unit activity in behaving animals, Proc. Psychobiol. Phvsiol. Psvchol., 12:171–206.

    CAS  Google Scholar 

  • Jasper, H.H., and Tessier, J., 1971, Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep. Science, 172:601–602.

    Article  PubMed  CAS  Google Scholar 

  • Jones, B. E., and Cuello, A. C., 1989, Afferents to the basal forebrain cholinergic cell area from pontomesencephalic-catecholamine, serotonin, and acetylcholine-neurons, Neurosci., 31:37–61.

    Article  CAS  Google Scholar 

  • Jourdain, A., Semba, K., and Fibiger, H. C., 1989, Basal forebrain and mesopontine tegmental projections to the reticular thalamic nucleus: an axonal collateralization and immunohistochemical study in the rat. Brain Res., 505:55–65.

    Article  PubMed  CAS  Google Scholar 

  • Jung, R., and Kornmüller, A. E., 1938, Eine Methodik der Ableitung lokalisierter Potentialschwankungen aus sucorticalen Hirnaebieten, Arch. Psychiat., 109:1–30.

    Article  Google Scholar 

  • Kanai, T., and Szerb, J. C., 1965, Mesencephalic reticular activating system and cortical acetylcholine output. Nature, 205:80–82.

    Article  PubMed  CAS  Google Scholar 

  • Kayama, Y., Sumitomo, I., and Ogawa, T., 1986, Does the ascending cholinergic projection inhibit or excite neurons in the rat thalamic reticular nucleus? J. Neurophvsiol., 56:1310–1320.

    CAS  Google Scholar 

  • Köhler, C., Chan-Palay, V., and Jang-Yen, W., 1984, Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region in the rat brain, Anat. Embryol., 169:41–44.

    Article  PubMed  Google Scholar 

  • Kramis, R., Vanderwolf, C. H., and Bland, B. H., 1975, Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: Relations to behavior and effects of atropine, diethyl ether, urethane and pentobarbital. Exp. Neurol., 49:58–85.

    Article  PubMed  CAS  Google Scholar 

  • Lamour, Y., Dutar, P., and Jobert, A., 1984, Septo-hippocampal and other medial septum-diagonal band neurons: electrophysiological and pharmacological properties. Brain Res., 309:227–239.

    Article  PubMed  CAS  Google Scholar 

  • Lamour, Y., Dutar, P., and Rascol, O., and Jobert, A., 1986, Basal forebrain neurons projecting to the rat frontoparietal cortex: electrophysiological and pharmacological properties, Brain Res., 362:122–132.

    Article  PubMed  CAS  Google Scholar 

  • Levey, A. I., Hallanger, A., and Wainer, B. H., 1987, Cholinergic nucleus basalis neurons may influence the cortex via the thalamus, Neurosci. Lett., 74:7–13.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, P. R., and Shute, C. C. D., 1967, The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ and supra-optic crest. Brain, 90:521–540.

    Article  PubMed  CAS  Google Scholar 

  • Livingstone, M. S., and Hubel, D. H., 1981, Effects of sleep and arousal on the processing of visual information in the cat. Nature, 291:554–561.

    Article  PubMed  CAS  Google Scholar 

  • Longo, V. G., 1966, Behavioral and electroencephalographic effects of atropine and related compounds, Pharmacol. Rev., 18:965–996.

    PubMed  CAS  Google Scholar 

  • Martinez-Murillo, R., Villalba, R. M., and Rodrigo, J., 1990, Immunocytochemical localization of cholinergic terminals in the region of the nucleus basalis magnocellularis of the rat: a correlated light and electron microscopic study, Neurosci., 36:361–376.

    Article  CAS  Google Scholar 

  • McCormick, D. A., and Prince, D. A., 1986, Acetylcholine induces burst firing in thalamic reticular neurons by activating a potassium conductance. Nature, 319:402–405.

    Article  PubMed  CAS  Google Scholar 

  • McGinty, D. J., and Sterman, M. B., 1968, Sleep suppression after basal forebrain lesions in the cat. Science, 160:1253–1255.

    Article  PubMed  CAS  Google Scholar 

  • McGinty, D., and Szymusiak, R., 1988, Neuronal unit activity patterns in behaving animals: brainstem and limbic system, Ann. Rev. Psychol., 39:135–168.

    Article  CAS  Google Scholar 

  • Metherate, R., Tremblay, N., and Dykes, R. W., 1987, Acetylcholine permits long-term enhancement of neuronal responsiveness in cat primary somatosensory cortex, Neurosci., 22:75–81.

    Article  CAS  Google Scholar 

  • Morruzi, G., and Magoun, H. W., 1949, Brainstem reticular formation and activation of the EEG, Electroenceph. Clin. Neurophysiol., 1:455–473.

    Google Scholar 

  • Napier, T. C., and Potter, P. E., 1989, Dopamine in the rat ventral pallidum/substantia innominata: biochemical and electrophysiological studies, Neuropharmacol., 28:757–760.

    Article  CAS  Google Scholar 

  • Nicoll, R. A., 1985, The septo-hippocampal projection: a model cholinergic pathway, TINS, December, 533–536.

    Google Scholar 

  • Panula, P., Yang, H.-Y. T., and Costa, E., 1984, Histamine-containing neurons in the rat hypothalamus, Proc. Natl. Acad. Sci. U.S.A., 81:2572–2576.

    Article  PubMed  CAS  Google Scholar 

  • Pirch, J., Rigdon, G., Rucker, H., and Turco, K., 1991, Basal forebrain modulation of cortical cell activity during conditioning, in “The Basal Forebrain: Anatomy to Function”, C. T. Napier, P. W. Kalivas, and I. Hanin, eds., Plenum, New York. 7.

    Google Scholar 

  • Porter, L. L., and Asanuma, C., 1989, Ultrastructural and immunohistochemical observations on a projection from the magnocellular basal forebrain in rats, Soc. Neurosci. Abstr., 15:289.

    Google Scholar 

  • Rasmusson, D. D., and Dykes, R. W., 1988, Long-term enhancement of evoked potentials in cat somatosensory cortex produced by co-activation of the basal forebrain and cutaneous receptors, Exp. Brain Res., 70:276–286.

    Article  PubMed  CAS  Google Scholar 

  • Reiner, P. B., Semba, K., Fibiger, H. C., and McGeer, E. G., 1987, Physiological evidence for subpopulations of cortically projecting basal forebrain neurons in the anesthetized rat, Neurosci., 20:629–636.

    Article  CAS  Google Scholar 

  • Richardson, R. T., and DeLong, M. R., 1991, Electrical studies of the function of the nucleus basalis in primates, in “The Basal Forebrain: Anatomy to Function”, C. T. Napier, P. W. Kalivas, and I. Hanin, eds, Plenum, New York.

    Google Scholar 

  • Rolls, E. T., Canghera, M. K., and Roper-Hall, A., 1979, The latency of activation of neurones in the lateral hypothalamus and substantia innominata during feeding in the monkey. Brain Res., 164:121–135.

    Article  PubMed  CAS  Google Scholar 

  • Rye, D. B., Wainer, B. H., Mesulam, M.-M., Mufson, E. J., and Saper, C. B., 1984, Cortical Projections arising from the basal forebrain: a study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyl-transferase, Neurosci., 13:627–643.

    Article  CAS  Google Scholar 

  • Sato, H., Rata, Y., Hagihara, K., and Tsumoto, T., 1987, Effects of cholinergic depletion on neuron activities in the cat visual cortex, J. Neurophvsiol., 58:781–794.

    CAS  Google Scholar 

  • Satoh, K., and Fibiger, H. C., 1986, Cholinergic neurons of the laterodorsal tegmental nucleus: Efferent and afferent connections, J. Comp Neurol., 253:277–302.

    Article  PubMed  CAS  Google Scholar 

  • Schwaber, J. S., Rogers, W. T., Satoh, K., and Fibiger, H. C., 1987, Distribution and organization of cholinergic neurons in the rat forebrain demonstrated by computer-aided data acquisition and three-dimensional reconstruction, J. Comp. Neurol., 263:309–325.

    Article  PubMed  CAS  Google Scholar 

  • Semba, K., and Fibiger, H. C., 1988, Time of origin of cholinergic neurons in the rat basal forebrain, J. Comp. Neurol., 269:87–95.

    Article  PubMed  CAS  Google Scholar 

  • Semba, K., and Fibiger, H. C., 1989, Organization of central cholinergic systems. Proc. Brain Res., 79:37–63.

    Article  CAS  Google Scholar 

  • Semba, K., and Fibiger, C. H., Forebrain afferents to the magnocellular basal forebrain of the rat, in preparation.

    Google Scholar 

  • Semba, K., Reiner, P. B., McGeer, E. G., and Fibiger, H. C., 1988a, Non-cholinergic basal forebrain neurons project to the contralateral basal forebrain in the rat, Neurosci. Lett., 84:23–28.

    Article  PubMed  CAS  Google Scholar 

  • Semba, K., Reiner, P. B., McGeer, E. G., and Fibiger, H. C., 1988b, Brainstem afferents to the magnocellular basal forebrain studied by axonal transport, immunohisto-chemistry, and electrophysiology in the rat, J. Comp. Neurol., 267:433–453.

    Article  PubMed  CAS  Google Scholar 

  • Semba, K., Reiner, P. B., McGeer, E. G., and Fibiger, H. C., 1989, Brainstem projecting neurons in the rat basal forebrain: neurochemical, topographical, and physiological distinctions from cortically projecting cholinergic neurons. Brain Res. Bull., 22:501–509.

    Article  PubMed  CAS  Google Scholar 

  • Shute, C. C. D., and Lewis, P. R., 1967, The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections. Brain., 90:497–520.

    Article  PubMed  CAS  Google Scholar 

  • Sillito, A. M., and Kemp, J. A., 1983, Cholinergic modulation of the functional organization of the cat visual cortex. Brain Res., 289:143–155.

    Article  PubMed  CAS  Google Scholar 

  • Skinner, B. F., 1974, “About Behavioralism”, Alfred A. Knopf, New York.

    Google Scholar 

  • Spehlmann, R., Daniels, J. C., and Smathers, C. C., Jr., 1971, Acetylcholine and the synaptic transmission of specific impulses to the visual cortex. Brain. 94:125–138.

    Article  PubMed  CAS  Google Scholar 

  • Starzl, T.E., Taylor, C.W., and Magoun, H.W., 1951, Ascending conduction in reticular activating system, with special reference to the diencephalon, J. Neurophvsiol., 14:461–477.

    CAS  Google Scholar 

  • Steinbusch, H. W. M., and Mulder, A. H., 1984, Immunohisto-chemical localization of histamine neurons and mast cells in the rat brain, in: “Handbook of Chemical Neuroanatomy, Vol. 3: Classical Transmitters and Transmitter Receptors in the CNS, Part II”, A. Björklund, T. Hökfelt, and M. J. Kuhar, eds., Elsevier, Amsterdam, pp. 126–140.

    Google Scholar 

  • Steriade, M., 1981, Mechanisms underlying cortical activation: neuronal organization and properties of the midbrain reticular core and intralaminar thalamic nuclei, in: “Brain Mechanisms and Perceptual Awareness”, O. Pompeiano, and C. Ajmone Marsan, eds., Raven, New York, pp. 327–377.

    Google Scholar 

  • Steriade, M., Datta, S., Paré, D., Oakson, G., and Curro Dossi, R., 1990, Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems, J. Neurosci., 10:2541–2559.

    PubMed  CAS  Google Scholar 

  • Steriade, M. and Deschênes, M., 1984, The thalamus as a neuronal oscillator. Brain Res. Rev., 8:1–63.

    Article  Google Scholar 

  • Steriade, M., and McCarley, R. W., 1990, “Brainstem Control of Wakefulness and Sleep”, Plenum, New York.

    Google Scholar 

  • Steriade, M., Parent, A., Paré, D., and Smith, Y., 1987, Cholinergic and non-cholinergic neurons of the cat basal forebrain project to the reticular and mediodorsal thalamic nuclei. Brain Res., 408:372–376.

    Article  PubMed  CAS  Google Scholar 

  • Sterman, M. B., and Clemente, C. D., 1962, Forebrain inhibitory mechanisms: sleep patterns induced by basal forebrain stimulation in the behaving cat, Exp. Neurol., 6:103–117.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, D. J., MacFabe, D. F., and Vanderwolf, C. H., 1984, Cholinergic activation of electrocorticogram: role of the substantia innominata and effects of atropine and quinuclidinyl benzilate. Brain Res., 322:219–232.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, M., and Fox, S. E., 1989, Two populations of rhythmically bursting neurons in rat medial septum are revealed by atropine, J. Neurophysiol., 61:982–993.

    PubMed  CAS  Google Scholar 

  • Stewart, M., and Fox, S. E., 1990, Do septal neurons pace the hippocampal theta rhythm? TINS, 13:163–168.

    PubMed  CAS  Google Scholar 

  • Stumpf, C., 1965, Drug action on the electrical activity of the hippocampus. Int. Rev. Neurobiol., 7:77–138.

    Article  Google Scholar 

  • Swanson, L. W., and Hartman, B. K., 1975, The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-ß-hydroxylase as a marker, J. Comp. Neurol., 163:467–506.

    Article  PubMed  CAS  Google Scholar 

  • Szymusiak, R., and McGinty, D., 1986, Sleep-related neuronal discharge in the basal forebrain of cats. Brain Res., 370:82–92.

    Article  PubMed  CAS  Google Scholar 

  • Szymusiak, R., and McGinty, D., 1989, Sleep-waking discharges of basal forebrain projection neurons in cats. Brain Res. Bull., 22:423–430.

    Article  PubMed  CAS  Google Scholar 

  • Vanderwolf, C. H., 1969, Hippocampal electrical activity and voluntary movement in the rat, Electroenceph. Clin. Neurophysiol., 26:407–418.

    Article  PubMed  CAS  Google Scholar 

  • Vanderwolf, C. H., 1988, Cerebral activity and behavior: control by central cholinergic and serotonergic systems. Int. Rev. Neurobiol., 30, 225–340.

    Article  PubMed  CAS  Google Scholar 

  • Vanderwolf, C.H., and Baker, G. B., 1986, Evidence that serotonin mediates non-cholinergic neocortical low voltage fast activity, non-cholinergic hippocampal rhythmical slow activity and contributes to intelligent behavior. Brain Res., 374:342–356.

    Article  PubMed  CAS  Google Scholar 

  • Vanderwolf, C. H., and Robinson, T. E., 1981, Reticulo-cortical activity and behavior: A critique of the arousal theory and a new synthesis, Behav. Brain Sci., 4:459–514.

    Article  Google Scholar 

  • Vanderwolf, C. H., and Stewart, D. J., 1988, Thalamic control of neocortical activation: a critical re-evaluation. Brain Res. Bull., 20:529–638.

    Article  PubMed  CAS  Google Scholar 

  • Vanni-Mercier, G., Sakai, K., and Jouvet, M., 1984, “Waking-state specific” neurons in the caudal hypothalamus of the cat, C. R. Acad. Sci., 298:195–220.

    CAS  Google Scholar 

  • Vincent, S. R., Satoh, K., Armstrong, D. M., and Fibiger, H.C., 1983, Substance P in the ascending cholinergic reticular system. Nature, 306:688–691.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, F. A. W., 1991, The relationship between learning, memory and neuronal responses in the primate basal forebrain, in “The Basal Forebrain: Anatomy to Function”, C. T. Napier, P. W. Kalivas, and I. Hanin, eds. Plenum, New York.

    Google Scholar 

  • Wilson, F. A. W., and Rolls, E. T., 1990, Neuronal responses related to the novelty and familiarity of visual stimuli in the substantia innominata, diagonal band of Broca and periventricular region of the primate basal forebrain, Exp. Brain Res., 80:104–120.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, T., Taguchi, Y., Shiosaka, S., Tanaka, J., Kubota, H., Terano, T., Tohyama, M., and Wada, H., 1984, Distribution of the histaminergic neuron system in the central nervous system of rats: a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res., 295:13–25.

    Article  PubMed  CAS  Google Scholar 

  • Zaborszky, L., 1989, Afferent connections of the forebrain cholinergic projection neurons, with special reference to monoaminergic and peptidergic fibers, in “Central Cholinergic Synaptic Transmission”, M. Frotscher, and U. Misgeld, eds, Birkhauser, Basel, pp. 12–32.

    Chapter  Google Scholar 

  • Zaborszky, L., Cullinan, W. E., and Braun, A., 1991, Afferents to basal forebrain cholinergic projection neurons: an update, in “The Basal Forebrain: Anatomy to Function”, C. T. Napier, P. W. Kalivas, and I. Hanin, eds. Plenum, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Semba, K. (1991). The Cholinergic Basal Forebrain: A Critical Role in Cortical Arousal. In: Napier, T.C., Kalivas, P.W., Hanin, I. (eds) The Basal Forebrain. Advances in Experimental Medicine and Biology, vol 295. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0145-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0145-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0147-0

  • Online ISBN: 978-1-4757-0145-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics