Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 68))

Abstract

It has become evident in the last years that the formation conditions of an intermetallic compound can have a strong influence on its superconducting properties. The “intermetallic compounds” represent in principle all possible combinations between two or more metallic elements, but has in practice been extended to cases where one constituent is a nonmetal, i.e., B, C, N, S, etc. For several high TC materials, the maximum value of TC was found for atomic compositions corresponding to an extreme limit of the homogeneity range of the superconducting phase, stable at high temperatures only. At equilibrium, the formation temperatures of the most interesting high TC superconducting phases are situated well above 1500°C; it is thus of fundamental interest to know accurately the high temperature relationships of this portion of the phase diagram. The precise knowledge of the formation conditions of a superconducting phase is a necessary condition for the preparation of homogeneous, well-characterized alloys suitable for low temperature measurements. The resulting consequence is that investigations up to 2000°C and more must be carried out for a better phenomenological understanding of superconducting properties in the temperature range below 23 K. This statement is well accepted at present, but does not correspond to the way superconductors have been studied. A review of the published data shows that a large number of the investigations on superconducting materials have been made on insufficiently characterized samples, particularly before 1970.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Flükiger, R. Baillif, and E. Walker, Mat. Res. Bull. 13, 743 (1978).

    Article  Google Scholar 

  2. R. Roberge and J-L. Fihey, J. Appl. Phys. 48, 1327 (1977).

    Article  ADS  Google Scholar 

  3. H. Devantay, J. L. Jorda, M. Decroux, J. Müller, and R. Flükiger (to be published).

    Google Scholar 

  4. J. Bevk and J. P. Harbison, J. Mat. Sci. 14, 1459 (1979).

    Article  ADS  Google Scholar 

  5. R. Flükiger, Filamentary A15 Superconductors, editors, M. Suenaga and A.F. Qark, Plenum Press (1980), p. 299.

    Chapter  Google Scholar 

  6. R. Flükiger and J. L. Jorda, Applications of Phase Diagrams in Metallurgy and Ceramics, editor, M. Carter, NBS, Special Publication No. 196 (1978) p. 375.

    Google Scholar 

  7. J. L. Jorda, R. Flükiger, and J. Muller, J. Mat. Sci. 13, 2471 (1978).

    Article  ADS  Google Scholar 

  8. A. Paoli and R. Flükiger, unpublished results.

    Google Scholar 

  9. A. Junod, J. L. Staudenmann, J. Muller, and P. Spitzli, J. Low Temp. Phys. 5, 25 (1971).

    Article  ADS  Google Scholar 

  10. R. Flükiger, J. L. Jorda, A. Junod, P. Fischer, Appl. Phys. Comm. (to be published).

    Google Scholar 

  11. W. W. Wendtlandt, Thermal Methods of Analysis, 2nd Edition, P.J. Elving and I. M. Kotthoff, Editors, John Wiley & Sons, New York (1974).

    Google Scholar 

  12. L. N. Latyev, V. Ya. Chekhovskoi, and E. N. Shestakov, High Temp. High Pressures 679 (1972).

    Google Scholar 

  13. C. Susz, R. Flükiger, J. L. Jorda, J. Muller, and R. M. Waterstrat, J. Less-Common Metals 62, 25 (1978).

    Article  Google Scholar 

  14. R. Flükiger, C. Susz, F. Heiniger, and J. Muller, J. Less-Common Metals 40, 103 (1975).

    Article  Google Scholar 

  15. R. Flükiger, unpublished results.

    Google Scholar 

  16. M. Camacho and R. Flükiger, unpublished results.

    Google Scholar 

  17. C. Susz, Ph.D. Thesis No.1758, University of Geneva (1976).

    Google Scholar 

  18. E. Röschel, O. Loebich Jr. and C. J. Raub, Z. Metallkde 64, 359 (1973).

    Google Scholar 

  19. P. Duwez, Progress in Solid State Chemistry, Pergamon Press, New York, Vol. 3, p. 377 (1966).

    Google Scholar 

  20. R. Flükiger, K. Yvon, C. Susz, R. Roggen, A. Paoli, and J. Muller, J. Less-Common Metals 32, 207 (1973).

    Article  Google Scholar 

  21. R. Flükiger and J. L. Jorda, Sol. State Comm. 22, 109 (1977).

    Article  ADS  Google Scholar 

  22. A. R. Sweedler, D. G. Schweizer, and G. W. Webb, Phys. Rev. Lett. 33, 168 (1974).

    Article  ADS  Google Scholar 

  23. B. Besslein, G. Ischenko, S. Klaumünzer, P. Müller, H. H. Neumllller, K. Schmelz, and H. Adrian,Phys. Lett. 53A, 49 (1975).

    ADS  Google Scholar 

  24. E. C. van Reuth, R. M. Waterstrat, R. D. Blaugher, R. A. Hein, and J. E. Cox, Proc. LTIO, Ed. Viniti, Moscow, Vol. 1b. 137 (1967).

    Google Scholar 

  25. E. C. van Reuth and R. M. Waterstrat, Acta Cryst. B24, 186 (1968).

    Google Scholar 

  26. R. Flükiger, Ph.D. Thesis No. 1570, University of Geneva (1972).

    Google Scholar 

  27. R. Flükiger, J. L. Staudenmann, and P. Fischer, J. Less-Common Metals 50, 253 (1976).

    Article  Google Scholar 

  28. A. Guha, M. P. Sarachik, F. W. Smith, and L. R. Testardi, Phys. Rev. B18, 9 (1978).

    ADS  Google Scholar 

  29. B. N. Das, J. E. Cox, R. W. Huber, and R. A. Meussner, Metall, Trans. 8A, 541 (1977).

    Google Scholar 

  30. J. Labbe and E. C. Van Reuth, Phys. Rev. Lett. 24, 1232 (1970).

    Article  ADS  Google Scholar 

  31. A. Junod, P. Bellon, R. Flükiger, F. Heiniger, and J. Muller, Phys. Kond. Materie 15, 133 (1972).

    Article  ADS  Google Scholar 

  32. P. Spitzli, R. Flükiger, F. Heiniger, A. Junod, J. Muller, and J. L. Staudenmann, J. Phys. Chem. Sol. 31, 1531 (1970).

    Article  ADS  Google Scholar 

  33. A. Junod, R. Flükiger, A. Treyvaud, and J. Muller, Solid State Commun. 19, 265 (1976).

    Article  ADS  Google Scholar 

  34. E. Z. Kurmaev, F. Werfel, O. Brümmer, and R. Flükiger, Sol. State Commun. 22, 375 (1975).

    Article  Google Scholar 

  35. R. Flükiger, Proc. IV Int. Conf. on Solid Compounds of Transition Elements, Geneva, 1973, p. 206.

    Google Scholar 

  36. B.W. Roberts, Superconducting Materials and Some of Their Properties, Westinghouse Report No. 63-RL-3252m, 1963, p. 38.

    Google Scholar 

  37. G. Bongi, O. Fischer, H. Jones, R. Flükiger, and A. Treyvaud, Helv. Phys. Acta 45, 13 (1972).

    Google Scholar 

  38. R. Flükiger, A. Paoli, and J. Muller, Solid State Commun. 14, 443 (1974).

    Article  ADS  Google Scholar 

  39. B. T. Matthias, E. A. Wood, E. Corenzwit, V. B. Bala, J. Phys. Chem. Solids 1, 188 (1956).

    Article  ADS  Google Scholar 

  40. C. C. Koch and J. J. Scarbrough, Phys. Rev. B3, 742 (1971).

    ADS  Google Scholar 

  41. P. Spitzli, Phys. Kond. Materie 13 , 22 (1971).

    Google Scholar 

  42. R. Flükiger, A. Junod, R. Baillif, P. Spitzli, A. Treyvaud, A A. Paoli, H. Devantay, and J. Muller, Sol. State Commun. 23, 699 (1977).

    Article  ADS  Google Scholar 

  43. G. R. Stewart, L. R. Newkirk, and F. A. Valencia, Phys. Rev. B20, 3647 (1979).

    ADS  Google Scholar 

  44. R. Flükiger, A. Paoli, R. Roggen, K. Yvon, and J. Muller, Sol. State Commun. 11, 61 (1972).

    Article  ADS  Google Scholar 

  45. R. M. Waterstrat and R. C. Manuszewski, Noble Metal Constitution Diagrams, Parts I and II, NBS Reports Nos. 10571 (1971) and 73–415 (1975).

    Google Scholar 

  46. H. L. Gegel, D. C. Yeh, J. T. Pajor and J. C. Ho, IEEE Trans. Magnetics MAG-13, 788 (1977).

    Article  ADS  Google Scholar 

  47. G. Zlegier, J. Appl. Phys. 49, 4141 (1978).

    Article  ADS  Google Scholar 

  48. R. Flüklger, R. Baillif, J. Muller, andK. Yvon, Solid State Commun. (to be published).

    Google Scholar 

  49. B. A. Smith, Mat. Res. Bull. 14, 431 (1979).

    Article  Google Scholar 

  50. R. Baillif, K. Yvon, R. Flükiger, and J. Muller, J. Low Temp. Phys. 37, 476 (1979).

    Article  Google Scholar 

  51. J. W. Hafstrom, G. S. Knapp, and A. T. Aldred, Phys. Rev. B.17, 2 892 (1978).

    Google Scholar 

  52. B. W. Batterman and C. S. Barrett, Phys. Rev. Lett. 13, 390 (1964).

    Article  ADS  Google Scholar 

  53. R. Mailfert, B. W. Batterman, and J. J. Hanak, Phys. Lett. 24A, 315 (1967).

    ADS  Google Scholar 

  54. E. Hembach, K. Tachikawa, and S. Takano, Phil. Mag. 21, 869 (1970).

    Article  ADS  Google Scholar 

  55. M. Jurisch, Intermetallische Phasen, Ed: Zentralinstitut für Festörperphysik and Werkstoff-forschung, Dresden (1976), p. 65.

    Google Scholar 

  56. A. Junod, J. Muller, H. Rietschel, and E. Schneider, J. Phys. Chem. Solids 39, 317 (1978).

    Article  ADS  Google Scholar 

  57. A. Junod, J. Phys. F: Met. Phys. 8, 1891 (1978)

    Article  ADS  Google Scholar 

  58. L. Brewer, High-Strength Materials, Victor F. Zackay, Ed., John Wiley & Sons, Inc., New York (1964), p. 1.

    Google Scholar 

  59. M. Hansen and K. Anderko, Constitution of Binary Alloys, Ed. McGraw-Hill, New York (1958).

    Google Scholar 

  60. R. P. Elliott, Constitution of Binary Alloys, McGraw-Hill, New York (1965).

    Google Scholar 

  61. F. A. Shunk, Constitution of Binary Alloys, Second Supplement, McGraw-Hill, New York (1969).

    Google Scholar 

  62. W. G. Moffatt, The Handbook of Binary Phase Diagrams, General Electric Report No. ISN 0–931 690–00-5.

    Google Scholar 

  63. R. Flükiger, P. Spitzli, F. Heiniger, and J. Muller, Phys. Lett. 29A, 407 (1969).

    ADS  Google Scholar 

  64. E. Röschel and E. Raub, Z. Metallkde 61, 71 (1970).

    Google Scholar 

  65. E. Raub, H. Beeskov, and D. Menzel, Z. Metallkde 52, 189 (1961).

    Google Scholar 

  66. J. R. Gavaler, M. A. Janocko, and C. K. Jones, Proc. LT 13 Vol, 3 (Plenum, New York), p. 558 (1974).

    Google Scholar 

  67. A, L, Giorgi, B. T. Matthias, andG. R. Stewart (to be published).

    Google Scholar 

  68. J. I. Federer and R. M. Steele, Nature 205, 587 (1965).

    Article  ADS  Google Scholar 

  69. B. T. Matthias, Phys. Rev. 97, 74 (1955).

    Article  ADS  Google Scholar 

  70. F. Heiniger, Phys. Kond. Materia 5, 243 (1966).

    Article  ADS  Google Scholar 

  71. K. Yvon, Current Topics in Materials Science, E. Kaldis, Ed., North -Holland, New York, Vol. 3 (1979), p. 53.

    Google Scholar 

  72. A. L Giorgi and B. T. Matthias, Phys. Rev. B17, 2160 (1978).

    ADS  Google Scholar 

  73. J. K. Hülm and R. D. Blaugher, Phys. Rev. 123, 1569 (1961).

    Article  ADS  Google Scholar 

  74. B. T. Matthias, Phys. Lett. 25A, 226 (1967).

    ADS  Google Scholar 

  75. E. Bucher, F. Laves, J. Muller, and H. V. Philipsbom, Phys. Lett. 8, 27 (1964).

    Article  ADS  Google Scholar 

  76. B. T. Matthias, T. H. Geballe, L. D. Longinotti, E. Corenzwit, G. W. Hull, R. H. Willens, and J. P. Maitz, Science 156, 645 (1967).

    Article  ADS  Google Scholar 

  77. B. C. Giessen, P. N. Dangel, and N. J. Grant, J. Less-Common Metals 13, 62 (1967).

    Article  Google Scholar 

  78. R. M. Waterstrat and R. C. Manuszewski, J. Less-Common Metals 32, 31 (1973).

    Google Scholar 

  79. S.A. Nemnonov, E. Z. Kurmaev, B. Kh. Ishinukhametov, V. B. Belash, Phys. State Sol. B46, 17 (1971).

    Google Scholar 

  80. E. Z. Kurmaev, V. P. Belash, S.A. Nemnonov, and A. S. Shulakov, Phys. Stat. Solidi 61, 365 (1974).

    Article  ADS  Google Scholar 

  81. E. Z. Kurmaev, F. Werfel, O. Brlimmer, and R. Flükiger, Solid State Commun. 21, 239 (1977).

    Article  ADS  Google Scholar 

  82. B. C. Giessen, R. Koch, and N. J. Grant, Trans. AIME 230, 1268 (1964).

    Google Scholar 

  83. S. Moehlecke, D. E. Cox, and A. R. Sweedler, Sol. State Commun. 23, 703 (1977).

    Article  ADS  Google Scholar 

  84. A. G. Knapton, J. Inst. Met. 87, 28 (1958).

    Google Scholar 

  85. A. Taylor, N. Y. Doyle, and B. J. Kagle, J. Less-Common Metals 4, 436 (1962).

    Article  Google Scholar 

  86. S.J. Michalek and J. H. Brophy, Trans AIME 227, 1047 (1963).

    Google Scholar 

  87. V.N. Svechnikov, G. P. Dmitrieva, G. F. Kobzenko, and A. K. Shurin, Dokl. Akad. Nauk SSSR IM, 158, 668 (1964).

    Google Scholar 

  88. R. D. Blaugher, R. E. Hern, J. E. Cox, and R. M. Waterstrat, J. Low Temp. Phys. 1, 539 (1969).

    Article  ADS  Google Scholar 

  89. D. C. Johnston, Solid State Commun. 11, 1751 (1972).

    Article  ADS  Google Scholar 

  90. V. N. Eremenko and T. D. Shtepa, Russ. Met. Eng. Tr. 6, 127 (1970).

    Google Scholar 

  91. H. Nishimura and T. Hiramatsu, Nippon Kinzoku Gakkaishi 21, 469 (1957).

    Google Scholar 

  92. P. Pietrokowsky, J. Inst. Metals 90, 434 (1961).

    Google Scholar 

  93. A. Junod, R. Flükiger, and J. Muller, J. Phys. Chem. Solids 37, 27 (1976).

    Article  ADS  Google Scholar 

  94. E. Vielhaber and H. L. Luo, Solid State Commun. 5, 221 (1967).

    Article  ADS  Google Scholar 

  95. F. Heiniger and L. Wallden, Phys. stat. sol. (a) 5, 75 (1971).

    Article  ADS  Google Scholar 

  96. A. Müller and H. Voigt, Phys. Kondens. Materie 46, 185 (1972).

    Article  Google Scholar 

  97. D. I. Bardos, R. M. Waterstrat, T. J. Rowland and J. B. Darby Jr., J. Low Temp. Phys. 3, 509 (1970).

    Article  ADS  Google Scholar 

  98. R. Flükiger (to be published).

    Google Scholar 

  99. A. M. Clogstonand, V. Jaccarino, Phys. Rev. 121, 1357 (1961).

    Article  ADS  Google Scholar 

  100. J. Labbe and J. Friedel, J. Physique 27, 153, 303 (1966).

    Google Scholar 

  101. R. Flükiger, S. Foner, E. J. McNiff Jr., and Ø. Fischer, Solid State Commun. 30, 723 (1979).

    Article  ADS  Google Scholar 

  102. S. Foner, E.J. MéNiff Jr., B. T. Matthias, T. H. Geballe, R. H. Willens, and E. Corenzwit, Phys. Lett, 31A, 349 (1970).

    ADS  Google Scholar 

  103. S. Foner, E.J. McNiff Jr., L. J. Vieland, A. Wicklund, R. E. Miller, and G. W. Webb, IEEE Trans. Magnetics MAG-9, 318 (1976).

    Google Scholar 

  104. S. Foner and E. J. McNiff Jr., Phys. Lett. 58A, 318 (1976).

    ADS  Google Scholar 

  105. G. H. Bongi, R. Flükiger, A. Treyvaud, Ø. Fischer, H. Jones, and D. Schneider, J. Low Temp. Phys. 17, 223 (1974).

    Article  ADS  Google Scholar 

  106. D. B. Montgomery and H. Wizgall, Phys. Lett. 22, 48 (1966).

    Article  ADS  Google Scholar 

  107. J. Muller, R. Flükiger, A. Junod, F. Heiniger, and C. Susz, Proc. LT13, Plenum Press, Vol. 3, p. 446 (1972).

    Google Scholar 

  108. H. A. Brüning, Philips Research Reports 22, 349 (1967).

    Google Scholar 

  109. E. M. Savitskii, Yu. V. Efimov, K. Eichler, and P. Paiifler, Wiss. Zeitschrift der Techn. Universität Dresden 29, 675 (1978).

    Google Scholar 

  110. Ju. Kocerzinski, O. G. Kulik, and E. A. Schischkin, Stukt. faz., fazovoe prevr. i diagr. sost. metal. System“, Moskva: Izd. Nauka” (1974), 136.

    Google Scholar 

  111. E. S. Greiner and H. Mason, J. Appl. Phys. 35, 3058 (1964).

    Article  ADS  Google Scholar 

  112. C.J. Doherty, J. M. Poate and R.T.H. Voorhoeve, J. Appl. Phys. 48, 2050 (1977).

    Article  ADS  Google Scholar 

  113. E. M. Savitskii, Yu. V. Efimov, K. Eichler, and O. I. Evolinski, Russian Metallurgy 3, 137 (1974).

    Google Scholar 

  114. B. N. Kodess, Phys. stat. sol. (a) 4, 109 (1971).

    Article  ADS  Google Scholar 

  115. H. L. Luo, E. Vielhaber and E. Corenzwit, Z. Physik 230, 443 (1970).

    Article  ADS  Google Scholar 

  116. A. Müller, Z. Naturforschg. 24A, 1136 (1969).

    Google Scholar 

  117. T. Asada, T. Horiuchi, and M. Uchida, Japan J. Appl. Phys. 8, 958 (1969).

    Article  ADS  Google Scholar 

  118. R. E. Somekh and J. E. Evetts, Sol. State Commun. 24, 733 (1977).

    Article  ADS  Google Scholar 

  119. E. R. Stevens and O. N. Carlson, Met. Trans. 1, 1267 (1970).

    Google Scholar 

  120. R. Flükiger, P. Spitzli, and J. Muller (to be published).

    Google Scholar 

  121. L. V. Marchukova, N. M. Matveyeva, and I. I. Kornilov, Izv. Akad. Nauk SSSR, Met. Nob. 2, 207 (1973).

    Google Scholar 

  122. E. M. Savitskii, Yu. V. Efimov, and T. M. Frolova, Sov. Phys. Dokl. 22, 523 (1977).

    ADS  Google Scholar 

  123. F. Y. Fradin and J. D. Williamson, Phys. Rev. 10B, 2803 (1974).

    ADS  Google Scholar 

  124. E. M. Savitskii, V. V. Baron, and Yu. V. Efimov, Izv. Akad. Nauk, USSR, Neorgan. Mater. 2, 1444 (1966).

    Google Scholar 

  125. J. R. Gavaler, Appl. Phys. Lett. 23, 480 (1973).

    Article  ADS  Google Scholar 

  126. L. R. Testardi, J. H. Wernick, and W. A. Royer, Sol. State Commun. 15, 1 (1974).

    Article  ADS  Google Scholar 

  127. B. Krevet, W. Schauer, F. Wüchner, and K. Schulze, Appl. Phys. Lett. 36, 704 (1980).

    Article  ADS  Google Scholar 

  128. G. W. Webb, L. J. Vieland, R. E. Miller, and A. Wicklund Sol. State Commun. 9, 1769 (1971).

    Article  ADS  Google Scholar 

  129. J. L. Jorda, R. Flükiger, and J. Muller, J. Less-Common Metals 62, 25 (1978).

    Article  Google Scholar 

  130. A. Müller, Z. Naturforschg. 25A, 1659 (1970).

    ADS  Google Scholar 

  131. 131.The homogeneity range of Nb3Ge below 1500°C has been corrected by 1 at.% towards lower Ge content with respect to our original work (Ref. 129). This shift is due to imperfect microprobe calibration for the group of samples below 1500°c, which was analyzed separately in Ref. 129. The new low temperature phase limits agree with those given by A. Müller [l30] and by K. Politis (private communication).

    Google Scholar 

  132. B. T. Matthias, T. H. Geballe, R. H. Willens, E. Corenzwit, and G. W. Hull, Phys. Rev. A.139, 1501 (1965).

    Article  ADS  Google Scholar 

  133. J. L. Jorda, R. Flükiger, and J. Muller, J. Less-Common Metals 55, 249 (1977).

    Article  Google Scholar 

  134. J. L. Jorda, R. Flükiger, and J. Muller, J. Less-Common Metals (to be published).

    Google Scholar 

  135. C. E. Lundin and A. S. Yamamoto, Trans. AIME 236, 863 (1966).

    Google Scholar 

  136. R. H. Willens, T. H. Geballe, A. C. Gossard, J. P. Maita, A. Menth, G. W. Hull Jr. and R. R. Soden, Solid State Commun. 7,857 (1969).

    Article  Google Scholar 

  137. J. P. Charlesworth, I. Macphail, and P. E. Madsen, J. Materials Sci. 5, 580 (1970).

    Article  ADS  Google Scholar 

  138. L. J. Vieland, R. W. Cohen and W. Rehwald, Phys. Rev. Lett. 26, 373 (1971).

    Article  ADS  Google Scholar 

  139. L. F. Myzenkowa, V. V. Baron, and Ye. M. Savitskii, Russian Metallurgy 2, 89 (1966).

    Google Scholar 

  140. A. Junod, F. Heiniger, J. Muller, and P. Spitzli, Helv. Phys. Acta 43, 59 (1970).

    Google Scholar 

  141. It is not clear whether the sharp rise of TC at the Nb3Pt side is due to shielding effects only.

    Google Scholar 

  142. E. Tanaka, T. Fukuda, S. Kuma, T. Yamoshita, and Y. Onodera, Appl. Phys. Lett. 14, 389 (1969).

    Article  ADS  Google Scholar 

  143. A. Müller, Z. Naturforschg. 26b, 1035 (1971).

    ADS  Google Scholar 

  144. G. V. Raynor, J. Less-Common Metals 29, 333 (1972).

    Article  Google Scholar 

  145. S.A. Nemnonov and V. A. Trofimova, Phys. stat. sol. (b), 55 111 (1973).

    Article  ADS  Google Scholar 

  146. G. R. Stewart, L. R. Newkirk, and F. A. Valencia, Phys. Rev. B21, 5055 (1980).

    ADS  Google Scholar 

  147. R. M. Waterstrat, F. Haenssler, and J. Muller, J. Appl. Phys. 50, 4763 (1979).

    Article  ADS  Google Scholar 

  148. B. T. Matthias, T. H. Geballe, R. H. Willens, E. Corenzwit, and G. W. Hull Jr., Phys. Rev. A139, 1501 (1965).

    Article  ADS  Google Scholar 

  149. R. D. Feldman, R. H. Hammond and T. H. Geballe, Appl. Phys. Lett. 35, 818 (1979).

    Article  ADS  Google Scholar 

  150. R. Chevrel, M. Sergent, and J. Prigeant, J. Sol, State Chem. 3, 515 (1971).

    Article  ADS  Google Scholar 

  151. B. T. Matthias, M. Marezio, E. Corenzwit, A. S. Cooper, and H. E. Barz, Science 175, 1465 (1972).

    Article  ADS  Google Scholar 

  152. M. Sergeant, Q. Fischer, M. Decroux, C. Perrin, and R. Chevrel, J. Sol. State Chem. 22, 87 (1977).

    Article  ADS  Google Scholar 

  153. R. Flükiger, H. Devantay, J. L. Jorda, and J. Muller, IEEE Trans. Magnetics MAG-13, 818 (1977).

    Article  ADS  Google Scholar 

  154. G. H. Moh, “Topics in Current Chemistry”, Ed. Springer-Verlag, Berlin-Heidelberg, 1978, Vol, 76, p. 108.

    Book  Google Scholar 

  155. R. deJonge, T. A. Popma, G.A. Wiegers and F. Jellinek, J. Solid State Chem, 2, 188 (1970).

    Article  ADS  Google Scholar 

  156. R. Chevrel, M. Sergeant, and J. Prigent, Mat, Res. Bull. 9, 1487 (1974).

    Article  Google Scholar 

  157. M. Tovar, L. E. Delong, D. C. Johnston, and M. B. Maple, Solid State Commun. 30, 551 (1979).

    Article  ADS  Google Scholar 

  158. J. Hauck, Mat. Res. Bull, 12, 1015 (1977).

    Article  Google Scholar 

  159. Ø. Fischer, Appl. Phys. 16, 1 (1978).

    Article  ADS  Google Scholar 

  160. E. L. Haase and O. Mayer, Applied Superconductivity Conference, Santa Fe, N.M., Sept. 29—Oct. 2, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Flükiger, R. (1981). Phase Diagrams of Superconducting Materials. In: Foner, S., Schwartz, B.B. (eds) Superconductor Materials Science: Metallurgy, Fabrication, and Applications. NATO Advanced Study Institutes Series, vol 68. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0037-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0037-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0039-8

  • Online ISBN: 978-1-4757-0037-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics