Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 68))

Abstract

Superconductors within large-scale magnets can be subjected to high mechanical loads. These arise from three principal sources:

  1. 1.

    During fabrication, the conductor is subjected to both winding tension and bending strain. The latter can be particularly severe in dipole and quadrupole magnets, but also plays a role in small-bore high- field solenoids.

Contribution of NBS not subject to copyright.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. C. Koch and D.S. Easton, Cryogenics 17, 7 (1977).

    Article  Google Scholar 

  2. D.S. Easton, D. M. Kroeger, W. Specking, and C. C. Koch, J. Appl. Phys. 51, 2748 (1980).

    Article  ADS  Google Scholar 

  3. R. P. Reed, R. P. Mikesell, A. F. Clark, Adv. inCryog. Eng. 22, 463 (1977).

    Google Scholar 

  4. D. A. Wigley, Mechanical Properties of Materials at Low Temperatures, Plenum (1971).

    Google Scholar 

  5. D. S. Easton and D. M. Kroeger, IEEE Trans. Mag. MAG-15, 178 (1979).

    Article  ADS  Google Scholar 

  6. G. Rupp, Filamentary A15 Superconductors, Plenum Press (1980), Eds. M. Suenaga and A. F. Clark, p. 155.

    Chapter  Google Scholar 

  7. G. Rupp, Cryogenics 18, 663 (1978).

    Article  Google Scholar 

  8. T. Luhman, J. Appl. Phys. 50, 3766 (1979).

    Article  ADS  Google Scholar 

  9. J. W. Ekin, IEEE Trans. Mag. MAG-15, 197 (1979).

    Article  ADS  Google Scholar 

  10. C. C. Tsuei, Science 180 57 (1973).

    Article  ADS  Google Scholar 

  11. See, for example, R. Roberge, Chapter 6 of this volume and the references cited therein.

    Google Scholar 

  12. J. Bevk, J. P. Harbison, and J. L. Bell, J. Appl. Phys. 49, 6031 (1979).

    Article  ADS  Google Scholar 

  13. J. D. Verhoeven, D. K. Finnemore, E. D. Gibson, J. E. Ostenson, and L. F. Goodrich, Appl. Phys. Lett. 49, 101 (1978).

    Article  ADS  Google Scholar 

  14. S. Foner, R. Roberge, E.J.McNiff Jr., and B. B. Schwartz, Appl. Phys. Lett. 34, 241 (1979).

    Article  ADS  Google Scholar 

  15. E. Buehler and H. J. Levinstein, J. Appl. Phys. 36, 3856 (1965).

    Article  ADS  Google Scholar 

  16. C. B. Muller and E. Saur, Adv. Cryog. Eng. 8, 574 (1963).

    Google Scholar 

  17. W. A. Pupp, W. W. Sattler, E.J. Saur, J. Low Temp. Phys. 14, 1 (1974).

    Article  ADS  Google Scholar 

  18. J. P. McEvoy, Physica 55, 540 (1971).

    Article  ADS  Google Scholar 

  19. M. Pulver, Z. Physik 257, 261 (1972).

    Article  ADS  Google Scholar 

  20. J.W. Ekin, F. R. Pickett, and A. F. Clark, Proc. Int. Cryog. Mat. Conf. (Aug. 1975), Adv. Cryog. Eng. 22, 449 (1977).

    Google Scholar 

  21. J. W. Ekin, IEEE Trans. Mag.MAG-13, 127 (1977).

    Article  ADS  Google Scholar 

  22. J. W. Ekin, Appl. Phys. Lett. 29, 216 (1976).

    Article  ADS  Google Scholar 

  23. D. S. Easton, R. E. Schwall, Appl. Phys. Lett. 29, 319 (1976).

    Article  ADS  Google Scholar 

  24. J. L. McDougall, Proc. ICEC 6, IPC Science and Technology Press, 396 (1976).

    Google Scholar 

  25. H. Hillman, H. Kuckuck, H. Pfister, G. Rupp, E. Springer, M. Wilhelm, K. Wohlleben, and G. Ziegler, IEEE Trans. Mag. MAG-13, 792 (1977).

    Article  ADS  Google Scholar 

  26. G. Rupp, IEEE Trans. Mag. MAG-13, 1565 (1977).

    Article  ADS  Google Scholar 

  27. T. Luhman and M. Suenaga, Ibid., 800.

    Google Scholar 

  28. D. C. Larbalestier, J. W. McGraw, andM. N. Wilson, Ibid., 462.

    Google Scholar 

  29. G. Rupp, J. Appl. Phys. 48, 3858 (1977).

    Article  ADS  Google Scholar 

  30. J. W. Ekin, Proc. Int. Cryog. Mat. Conf. (Aug. 1977), Adv. Cryog. Eng. 24 306 (1978).

    Google Scholar 

  31. D. W. Deis, D. G. Hirzel, A. R. Rosdahl, D. R. Roach, H. S. Freynik, and J. P. Zbasnik, Ibid., 317.

    Google Scholar 

  32. T. Luhman, M. Suenaga, and C. J. Klamut, Ibid. 325.

    Google Scholar 

  33. G. Ziegler, J. Appl. Phys. 49(7), 4141 (1978).

    Article  ADS  Google Scholar 

  34. D. S. Easton and D. M. Kroeger, IEEE Trans. Mag. MAG-15, 178 (1979).

    Article  ADS  Google Scholar 

  35. G. Rupp, Ibid., 189.

    Google Scholar 

  36. R. J. Bartlett, R. D. Taylor, and J. D. Thompson, Ibid., 193.

    Google Scholar 

  37. J. W. Ekin, Ibid. 197.

    Google Scholar 

  38. R. Roberge, S. Foner, E. J. McNiff, Jr., B. B. Schwartz, and J. L. Fihey, Ibid., 687.

    Google Scholar 

  39. T. Luhman, M. Suenaga, D. O. Welch, and K. Kaiho, Ibid., 699.

    Google Scholar 

  40. D. O. Welch, Proc. Int. Cryog..Mat. Conf. (Aug. 1979), Adv. Cryog. Eng. 26 (1980), to be published.

    Google Scholar 

  41. G. Rupp, Ibid.

    Google Scholar 

  42. C. A. M. Van der Klein and J. Prij, Ibid.

    Google Scholar 

  43. T. Luhman, K. Kaiho, and M. Suenaga, Ibid.

    Google Scholar 

  44. D. S. Easton, W. Specking, and P. A. Sanger, Ibid.

    Google Scholar 

  45. R. Hoard, R. Scanlan, D. Cornish, and J. Zbasnik, Ibid.

    Google Scholar 

  46. D. M. Kroeger, D. S. Easton, A. Das Gupta, C. C. Koch, and J. O. Scarbrough, J. Appl. Phys. 51, 2184 (1980).

    Article  ADS  Google Scholar 

  47. J. W. Ekin, Cryogenics 20, 611 (1980).

    Article  Google Scholar 

  48. D.U. Gubser, T. L. Francavilla, D. G. Howe, and L. D. Jones, Appl. Phys. Lett. 31, 230 (1977).

    Article  ADS  Google Scholar 

  49. T. Okada, Proc. 6th Intl. Conf. on Mag. Tech., ALFA, Bratislava (1977).

    Google Scholar 

  50. G. Fujii, J. W. Ekin, R. Radebaugh, and A. F. Clark, Inst. Cryog. Mat. Conf. (Aug. 1979), Adv. Cryog. Eng. 26, (1980), to be published.

    Google Scholar 

  51. J. W. Ekin, and A. I. Braginski, IEEE Trans. Mag. MAG-15, 509 (1980).

    ADS  Google Scholar 

  52. A. F. Clark and J. W. Ekin, IEEE Trans. Mag. MAG-13, 38 (1977).

    Article  ADS  Google Scholar 

  53. J. W. Ekin, M. B. Kasen, D. T. Read, R. E. Schramm, R. L. Tobler, and A. F. Clark, NBS Internal Report 80–1633 (1980).

    Google Scholar 

  54. K. Tachikawa, Proc. ICEC 3, Berlin, 339 (1970).

    Google Scholar 

  55. M. Suenaga and W. B. Sampson, Appl. Phys. Lett. 18, 584 (1971).

    Article  ADS  Google Scholar 

  56. D. G. Howe, T. L. Francavilla, and D. U. Gubser, IEEE Trans. Mag. MAG-13, 815 (1977).

    Article  ADS  Google Scholar 

  57. Y. Tanaka, Y. Furuto, M. Ikeda, I. Inoue, T. Suzuki, and S. Meguro, Cryogenics 17, 233 (1977).

    Article  Google Scholar 

  58. A. I. Braginski, M. R. Daniel, G. W. Roland, and J. A. Woollam, IEEE Trans. Mag. MAG-14 (1978).

    Google Scholar 

  59. J. D. Thompson, M. P. Maley, L. R. Newkirk, Solid State Comm. 28, 729 (1978).

    Article  ADS  Google Scholar 

  60. J. Wo Ekin, IEEE Trans. Mag. MAG-17 (1981), to be published.

    Google Scholar 

  61. W. A. Fietz and W. W. Webb, Phys. Rev. 178, 657 (1969).

    Article  ADS  Google Scholar 

  62. J. Bardeen, L. N. Cooper, and J. R. Schreiffer, Phys. Rev. 108, 1175 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. See, for example, A. L. Fetter, P. C. Hohenberg, in Superconductivity, edited by R. D. Parks.

    Google Scholar 

  64. M. G. Benz, J. Appl. Phys. 39, 2533 (1968).

    Article  ADS  Google Scholar 

  65. J. W. Ekin, Filamentary A15 Superconductors, (1980), p. 187, Eds. M. Suenaga and A. F. Clark, Plenum Press.

    Chapter  Google Scholar 

  66. T. Luhman and D.O. Welch, 8th Symp. on Eng. Prob, in Fusion Research, 1979, IEEE Pub. No. 79CH 1441–5 NPS, p. 241.

    Google Scholar 

  67. K. Kaiho, T. S. Luhman, M. Suenaga, and W. B. Sampson, Appl. Phys. Lett. 36, 223 (1980).

    Article  ADS  Google Scholar 

  68. J. W. Ekin, J. Appl. Phys. 49, 3406 (1978).

    Article  ADS  Google Scholar 

  69. J. W. Ekin, A. F. Clark, and J. C. Ho, J. Appl. Phys. 49, 3410 (1978).

    Article  ADS  Google Scholar 

  70. T. Luhman, D. O. Welch, andM. Suenaga, IEEE Trans. Mag. MAG-17 (1981), to be published.

    Google Scholar 

  71. R. Scalan, private communication.

    Google Scholar 

  72. P. A. Sanger, E. loriatti, C. Spencer, andC. Heyne, 8th Symp. on Eng. Prob, in Fusion Research, 1979, to be published.

    Google Scholar 

  73. S. Foner, R. Roberge, E.J. McNiff Jr., B. B. Schwartz, and J. Lo Fihey, Appl. Phys. Lett. 34, 241 (1979).

    Article  ADS  Google Scholar 

  74. S. F. Cogan and R. M. Rose, Appl. Phys. Lett. 35, 884 (1979).

    Article  ADS  Google Scholar 

  75. D. N. Cornish, Proc. 2nd Intl Conf. on Magnet Technology, 507 (1967).

    Google Scholar 

  76. P. F. Smith and B. Colyer, Cryogenics 15, 2011 (1975).

    Article  Google Scholar 

  77. J. W. Ekin, R. E. Schramm, and A. F. Clark, Nonmetallic Materials and Composites at Low Temperatures, Plenum Press, New York, 301 (1979).

    Chapter  Google Scholar 

  78. J. W. Ekin, R. E. Schramm, and M. J. Superczynski, Proc. Int’l. Cryog. Mat. Conf. (Aug. 1979), Adv. Cryog. Eng. 26, 677 (1980).

    Article  Google Scholar 

  79. A. J. Middleton, P. D. Hey, and B. Colyer, Rutherford Laboratory Report RHEL/R265, 1972.

    Google Scholar 

  80. M. A. Green, D. E. Coyle, P. B. Miller, and W. F. Wenzel, Nonmetallic Materials and Composites at Low Temperatures, Plenum Press, New York, 409 (1979).

    Book  Google Scholar 

  81. R. S. Kensley and Y. Iwasa, Cryogenics 20, 25 (1980).

    Article  Google Scholar 

  82. V. Arp, J. Appl. Phys. 48, 2026 (1977).

    Article  ADS  Google Scholar 

  83. W. Hassenzahl, Cryogenics, to be published.

    Google Scholar 

  84. H. Sekine, K. Tachikawa, and Y. Iwasa, Appl. Phys. Lett. 35, 472 (1979).

    Article  ADS  Google Scholar 

  85. J. W. Ekin and H. Sekine, Appl. Phys. Lett., to be published.

    Google Scholar 

  86. M. N. Wüson and Y. Iwasa, Cryogenics 18, 17 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Ekin, J.W. (1981). Mechanical Properties and Strain Effects in Superconductors. In: Foner, S., Schwartz, B.B. (eds) Superconductor Materials Science: Metallurgy, Fabrication, and Applications. NATO Advanced Study Institutes Series, vol 68. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0037-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0037-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0039-8

  • Online ISBN: 978-1-4757-0037-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics