Skip to main content

Metabolic Acclimatization to Cold and Season in Birds

  • Chapter

Part of the book series: NATO ASI Series ((ASIAS,volume 173))

Abstract

With the prominent role augmented rates of thermogenesis play in the regulation of body temperature by most birds in winter cold, it is of interest to examine the extent to which this process is affected by metabolic acclimatization. Such adjustment affects not only the cold resistance of these animals, but also their energy requirements in a season when food supplies are declining and the time to locate them minimal. We shall emphasize naturally occurring forms of metabolic acclimatization in wild birds, but some consideration also will be given to that associated with exposure to cold in the laboratory. Smaller birds are of primary concern because of their limited capacities for insulative acclimatization, though indications of metabolic acclimatization in larger forms also will be considered. Particular attention will be devoted to indications of acclimatization involving metabolic level, thermogenic capacity, endurance in the cold, extent of energy reserves, and the biochemical correlates of cold resistance. Our goal is to characterize metabolic acclimatization by birds to cold and season to an extent commensurate with current knowledge of this form of compensation.

Research of W. R. Dawson and associates supported by grants from the National Science Foundation, currently BSR 84-07952.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambrose, S. J., and Bradshaw, S. D., 1988, Seasonal changes in standard metabolic rates in the white-browed scrubwren Sericornis frontalis (Acanthizidae) from arid, semi-arid, and mesic environments. Comp. Biochem. Physiol., 89A: 79.

    Article  Google Scholar 

  • Arieli, A., Berman, A., and Meltzer, A., 1979, Cold thermogenesis in the summer-acclimatized and winter-acclimated domestic fowl, Comp. Biochem. Physiol., 63C: 7.

    Google Scholar 

  • Barré, H., 1986, Metabolic and insulative changes in winter-and summeracclimatized king penguin chicks, J. Comp. Physiol., B154: 317.

    Google Scholar 

  • Barré, H., Cohen-Adad, F., and Rouanet, J., 1987, Two daily glucagon injections induce nonshivering thermogenesis in Muscovy ducklings. Am. J. Physiol., 252: E616.

    PubMed  Google Scholar 

  • Barré, H., and Roussel, B., 1986, Thermal and metabolic adaptation to first cold-water immersion in juvenile penguins, Am. J. physiol., 251: R456.

    PubMed  Google Scholar 

  • Bech, C., 1980, Body temperature, metabolic rate, and insulation in winter and summer acclimatized mute swans (Cygnus olor), J. Comp. Physiol., B136: 61.

    Article  Google Scholar 

  • Blem, C. R., 1973, Geographic variation in the bioenergetics of the house sparrow, Qrnithol. Monogr., 14: 96.

    Article  Google Scholar 

  • Blem, C. R., 1976, Patterns of lipid storage and utilization in birds, Am. Zool., 16: 671.

    CAS  Google Scholar 

  • Blem, C. R., and Pagels, J. F., 1984, Mid-winter lipid reserves of the golden-crowned kinglet, Condor, 86: 491.

    Article  Google Scholar 

  • Brackenbury, J., 1984, Physiological responses of birds to flight and running, Biol. Rev., 59: 559.

    Article  PubMed  CAS  Google Scholar 

  • Brody, S., 1945, “Bioenergetics and Growth,” Reinhold Publishing Corp., New York.

    Google Scholar 

  • Calder, W. A., 1984, “Size, Function, and Life History,” Harvard Univ. Press, Cambridge, MA.

    Google Scholar 

  • Callow, M., Morten, A., and Guppy, M., 1986, Marathon fatigue: the role of plasma free fatty acids, Eur. J. Appl. Physiol., 55: 654.

    Article  CAS  Google Scholar 

  • Cannon, B., and Nedergaard, J., 1988, Shivering and non-shivering thermogenesis in birds, this volume.

    Google Scholar 

  • Carey, C., Dawson, W. R., Maxwell, L. C., and Faulkner, J. A., 1978, Seasonal acclimatization to temperature in cardueline finches. II. Changes in body composition and mass in relation to season and acute cold stress, J. Comp. Physiol., B125: 101.

    Article  Google Scholar 

  • Carey, C., Marsh, R. L., Bekoff, A. C., and Olin, A., 1988, Enzyme activities and muscular patterns of shivering in house finches, this volume.

    Google Scholar 

  • Clark, J. H., and Conlee, R. K., 1979, Muscle and liver glycogen content: diurnal variation and endurance, J. Appl. Physiol., 47: 425.

    PubMed  CAS  Google Scholar 

  • Dawson, W. R., 1958, Relation of oxygen consumption ancf evaporative water loss to temperature in the cardinal, Physiol. Zool., 31: 37.

    Google Scholar 

  • Dawson, W. R., Buttemer, W. A., and Carey, C., 1985, A reexaminat ion of the metabolic response of house finches to temperature, Condor, 87: 424.

    Article  Google Scholar 

  • Dawson, W. R., and Carey, C., 1976, Seasonal acclimatization to temperature in cardueline finches. I. Insulative and metabolic adjustments, J. Comp. Physiol., 112: 317.

    Article  Google Scholar 

  • Dawson, W. R., and Marsh, R. L., 1986, Winter fattening in the American goldfinch and the possible role of temperature in its regulation, Physiol. Zool., 59: 357.

    Google Scholar 

  • Dawson, W. R., Marsh, R. L., Buttemer, W. A., and Carey, C., 1983a, Seasonal and geographic variation of cold resistance in house finches Carpodacus mexicanus, Physiol. Zool., 56: 353.

    Google Scholar 

  • Dawson, W. R., Marsh, R. L., and Yacoe, M. E., 1983b, Metabolic adjustments of small passerine birds for migration and cold, Am. J. Physiol., 245: R755.

    PubMed  CAS  Google Scholar 

  • Dawson, W. R., and Smith, B. K., 1986, Seasonal acclimatization in the American goldfinch (Carduelis trirstis), In: “Living in the Cold,” H. C. Heller, X. J. Musacchia, and L. C. H. Wang, eds., Elsevier Science Publishing Co., New York.

    Google Scholar 

  • Dawson, W. R., and Tordoff, H. B., 1959, Relation of oxygen consumption to temperature in the evening grosbeak, Condor, 61: 388.

    Article  Google Scholar 

  • Depocas, F., 1962, Body glucose as fuel in white rats exposed to cold: results with fasted rats, Am. J. Physiol., 202: 1015.

    PubMed  CAS  Google Scholar 

  • Dontcheff, L., and Kayser, C., 1934, Le rythme saisonnier du métabolisme de base chez le pigeon en fonction de la température moyenne du milieu, Ann. Physiol Physiocohim. Biol., 10: 285.

    CAS  Google Scholar 

  • Evans, P. R., 1969, Winter fat deposition and overnight survival of yellow buntings (Emberiza citrinella L.), J. Anim.Ecol., 38: 415.

    Article  Google Scholar 

  • Gelineo, S., 1934, Influence du milieu thermique sur la courbe de la thermorégulation, Compt. Rend.Soc. Biol., 117: 40.

    Google Scholar 

  • Gelineo, S., 1955, Température d’adaptation et production de chaleur chez oiseaux de petite taille, Arch. Sci. Physiol., 9: 225.

    CAS  Google Scholar 

  • Gelineo, S., 1964, Organ systems in adaptation: the temperature regulating system, In: “Handbook of Physiology, Section 4, Adaptation to Environment,” D. B. Dill, ed., American Physiological Society, Washington, D. C.

    Google Scholar 

  • Gelineo, S., 1969, Heat production in birds in summer and winter, Srpska Akad. Nauka I Umetnosti Belgrad, Bull Classe Sci Math. Natur., XXVI, Sci. Natur. (n. s.), no. 12: 99

    Google Scholar 

  • George, J. C., and John, T. M., 1986, Physiological responses to cold exposure in pigeons. In: “Living in the Cold,” H. C. Heller, X. J. Musacchia, and L. C. H. Wang, eds., Elsevier Science Publishing Co., New York.

    Google Scholar 

  • Giaja, J., 1925, Le métabolisme de sommet et le quotient métabolique, Ann. Physiol. Physcicochim. Biol., 1: 596.

    CAS  Google Scholar 

  • Giaja, J., 1931, Contribution à l’étude de la thermorégulation des oiseaux, Ann. Physiol. Physicochim. Biol., 7: 13.

    Google Scholar 

  • Hart, J. S., 1962, Seasonal acclimatization in four species of small wild birds, Physiol. Zool., 35: 224.

    Google Scholar 

  • Hart, J. S., 1964, Insulative and metabolic adaptations to cold in vertebrates, Soc. Exp. Biol. Symp., 35: 31.

    Google Scholar 

  • Hartman, F. A., 1961, Locomotor mechanisms in birds, Smithsonian Misc. Coll., 143: 1.

    Google Scholar 

  • Harvey, S., Klandorf, H., Foltzer, C., Strosser, M. T., and Phillips, J. G., 1985, Endocrine responses of ducks (Anas platyrhynchos) to treadmill exercise, Gen. Comp. Endocr., 48: 415.

    Article  Google Scholar 

  • Hissa, R., and Palokangas, R., 1970, Thermoregulation in the titmouse (Parus major L.), Comp. Biochem. Physiol., 33: 942.

    Article  Google Scholar 

  • Hohtola, E., 1982, Thermal and electromyographic correlates of shivering thermogenesis in the pigeon, Comp. Biochem. Physiol., 73A: 159.

    Article  Google Scholar 

  • Hohtola, E., and Stevens, E. D., 1986, The relationship of muscle electrical activity, tremor and heat production to shivering thermogenesis in Japanese quail, J. Exp. Biol., 125: 119.

    PubMed  CAS  Google Scholar 

  • Irving, L., Krog, J., and Monson, M., 1955, The metabolism of some Alaskan animals in winter and summer, Physiol. Zool., 28: 173.

    Google Scholar 

  • Johnson, S. R., and McTaggart Cowan, I., 1975, The energy cycle and thermal tolerance of the starlings (Aves, Sturnidae) in North America, Can. J. Zool., 53: 55.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson, J., Nordesjo, L.-O., and Saltin, B., 1974, Muscle glycogen utilization during exercise after physical training, Acta Physiol. Scand., 90: 210.

    Article  PubMed  CAS  Google Scholar 

  • King, J. R., 1972, Adaptive periodic fat storage by birds, Proc. XVth Internat. Ornith. Congr., p. 201.

    Google Scholar 

  • King, J. R., and Farner, D. S., 1961, Energy metabolism, thermoregulation and body temperature, In: “Biology and Comparative Physiology of Birds,” Vol. II, A. J. Marshall, ed., Academic Press, New York.

    Google Scholar 

  • Kendeigh, S. C., 1944, Effect of air temperature on the rate of energy metabolism of the English sparrow, J. Exp. Zool., 96: 1.

    Article  Google Scholar 

  • Koteja, P, 1986, Maximum cold-induced oxygen consumption in the house sparrow Passer domesticus L., Physiol. Zool., 59: 43.

    Google Scholar 

  • LeClerq, B., 1984, Adipose tissue metabolism and its control in birds, Poultry Sci., 63: 2044.

    Article  Google Scholar 

  • McCumbee, W. D., and Hazelwood, R. L., 1978, Sensitivity of chicken and rat adipocytes and hepatocytes to isologous and heterologous pancreatic hormones, Gen. Comp. Endocr., 34: 421.

    Article  PubMed  CAS  Google Scholar 

  • Marsh, R. L., Carey, C., and Dawson, W. R., 1984, Substrate concentrations and turnover of plasma glucose during cold exposure in seasonally acclimatized house finches, Carpodacus mexicanus, J. Comp. Physiol., B154: 469.

    Article  Google Scholar 

  • Marsh, R. L., and Dawson, W. R., 1982, Substrate metabolism in seasonally acclimatized American goldfinches, Am. J. Physiol., 242: R563.

    PubMed  CAS  Google Scholar 

  • Marsh, R. L., and Dawson, W. R., 1988a, Avian adjustments to cold, In: “Animal Adaptation to Cold,” L. Wang, ed., Springer-Verlag, Berlin. (In press)

    Google Scholar 

  • Marsh, R. L., Dawson, W. R., 1988b, Metabolism of energy substrates and seasonal acclimatization, this volume.

    Google Scholar 

  • Marsh, R. L., Dawson, W. R., Camilliere, J., and Olson, J. M., 1989, Regulation of glycolysis in the pectoralis muscles of seasonally acclimatized American goldfinches exposed to cold, Am. J. Physiol., submitted.

    Google Scholar 

  • Miller, D. S., 1939, A study of the physiology of the sparrow thyroid, J. Exp. Zool., 80: 259.

    Article  Google Scholar 

  • Minaire, Y., Vincent-Falquet, J.-C., Pernod, A., and Chatonnet, J., 1973, Energy supply in acute cold-exposed dogs, J. Appl. Physiol., 35: 51.

    PubMed  CAS  Google Scholar 

  • Pearce, J., 1977, Some differences between avian and mammalian biochemistry, Internat. J. Biochem., 8: 269.

    Article  CAS  Google Scholar 

  • Randle, P. J., Tubbs, P. K., 1979, Carbohydrate and fatty acid metabolism, In: “Handbook of Physiology, Section 2, The Cardiovascular System, Vol. 1, The Heart,” R. M. Berne, N. Sperelakis, and S. R. Geiger, eds., American Physiological Society, New York.

    Google Scholar 

  • Rennie, M. J., Winder. W. W., and Holloszy, J. O., 1976, A sparing effect of plasma fatty acids on muscle and liver glycogen content of the exercising rat, Biochem. J., 156: 649.

    Google Scholar 

  • Riesenfeld, G., Berman, A., and Hurwitz, S., 1979, Glucose kinetics and heat production in normotherraic, hypothermic, and hyperthermic fasted chickens, Comp. Biochem. Physiol., 67A: 199.

    Google Scholar 

  • Rogers, C. M., Ketterson, E. D., and Nolan, Jr., V., 1988, Regulation of winter fattening in dark-eyed juncos Junco hyemalis hyemalis: a geographical perspective, unpublished ms.

    Google Scholar 

  • Rosenmann, M., and Morrison, P., 1974, Maximum oxygen consumption and heat loss facilitation in small homeotherms by He-O2, Am. J. Physio1., 226: 490.

    CAS  Google Scholar 

  • Saarela, S., 1988, Thermogenic capacity of greenfinches and siskins in winter and summer, this volume.

    Google Scholar 

  • Scholander, P. F., Hock, R., Walters, V., Johnson, F., and Irving, L., 1950, Heat regulation in some arctic and tropical mammals and birds, Biol. Bull., 99: 237.

    Article  PubMed  CAS  Google Scholar 

  • Steube, M. M., and Ketterson, E. D., 1982, A study of fasting in tree sparrows (Spizella arborea) and dark-eyed juncos (Junco hyemalis): ecological implications, Auk, 99: 299.

    Google Scholar 

  • Thomas, V. G., and George, J. C., 1975, Changes in plasma, liver, and muscle metabolite levels in Japanese quail exposed to cold, J. Comp. Physiol., 100: 297.

    Article  CAS  Google Scholar 

  • Wallgren, H., 1954, Energy metabolism of two species of the genus Emberiza as correlated with distribution and migration, Acta Zool. Fennica, 84: 1.

    Google Scholar 

  • West, G. C., 1965, Shivering and heat production in wild birds, Physiol. Zool., 38: 111.

    Google Scholar 

  • Withers, P. C., 1977, Respiration, metabolism, and heat exchange of euthermic and torpid poorwills and hummingbirds, Physiol. Zool., 50: 43.

    Google Scholar 

  • Yacoe, M. E., and Dawson, W. R., 1983, Seasonal acclimatization in American goldfinches: the role of the pectoralis muscle, Am. J. Physiol., 242: R265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dawson, W.R., Marsh, R.L. (1989). Metabolic Acclimatization to Cold and Season in Birds. In: Bech, C., Reinertsen, R.E. (eds) Physiology of Cold Adaptation in Birds. NATO ASI Series, vol 173. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0031-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0031-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0033-6

  • Online ISBN: 978-1-4757-0031-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics