Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 199))

Abstract

Trypsin inhibitors contribute to the antinutritional component of raw soybean meal by inhibiting vertebrate pancreatic serine proteinases in the small intestine, resulting in a range of deleterious physiological effects in the animal. The variation in the nutritional quality of soybean cultivars stems partly from wide-ranging levels of trypsin inhibitor, and from varying proportions of trypsin inhibitors of two classes — the Kunitz and the Bowman-Birk inhibitor classes. The latter class is better able to survive heat processing and digestion in the stomach. Some variation in cultivars also arises from the array of. isoinhibitors present in the seed. The three Kunitz isoinhibitors, Tia, Tib and Tic differ by as much as 1000-fold in their interaction with bovine trypsin. The Bowman-Birk isoinhibitors differ not only in their extent of interaction with trypsin, but in their spectrum of inhibition of the other pancreatic enzymes, chymotrypsin and elastase. In this chapter, we look at twenty-two Bowman-Birk inhibitors from ten soybean cultivars and find at least twelve which are different enough in amino acid composition and/or inhibitor activity to be distinct protein species. Of these, three pairs are related by proteolytic digestion. Quite ironically, the Bowman-Birk inhibitors, and to some extent the Kunitz inhibitors, contribute to the nutritional quality of soybeans by virtue of their high cystine content which supplements the low or negligible amounts of sulfur-containing amino acids in the storage proteins that comprise the bulk of the protein reserve in the seed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bajjalieh, N., Orf, J. H., Hymowitz, T. and Jensen, A.H. (1980). Response of young chicks to raw, defatted Kunitz trypsin inhibitor variant soybeans as sources of dietary protein. Poultry Sci., 59, 328–332.

    Article  CAS  Google Scholar 

  • Bosterling, B. and Quast, U. (1981). Soybean trypsin inhibitor (Kunitz) is doubleheaded. Kinetics of the interaction of alpha-chymotrypsin with each side. Biochim. Biophys. Acta, 657, 58–72.

    Article  CAS  Google Scholar 

  • Bates, R. P., Knapp, F. W. and Arajo, P. E. (1977). Protein quality of green-mature, dry mature and sprouted soybeans. J. Food Sci., 42, 271–272.

    Article  CAS  Google Scholar 

  • Bau, H.M. and Debry, G. (1979). Germinated soybean protein products: chemical and nutritional evaluation. J. Am. Oil Chem. Soc., 56, 160–162.

    Article  CAS  Google Scholar 

  • Birk, Y. (1985). The Bowman-Birk inhibitor. Int. J. Peptide Protein Res., 25, 113–131.

    Article  CAS  Google Scholar 

  • Birk, Y., Gertler, A. and Khalef, S. (1963). A pure trypsin inhibitor from soya beans. Biochemical J., 87, 281–284.

    CAS  Google Scholar 

  • Brand, S.J. and Morgan, R.G.H. (1981). The release of rat intestinal cholecystokinin after oral trypsin inhibitor measured by bioassay. J. Physiol., 319, 325–343.

    CAS  Google Scholar 

  • Clark, R.W., Mies, D.W. and Hymowitz, T. (1970). Distribution of a trypsin inhibitor variant in seed proteins of soybean varieties. Crop Sci., 10, 486–487.

    Article  Google Scholar 

  • Davis, B.J. 91964). Disc electrophoresis. II. Method and application to human serum proteins. Ann. N.Y. Acad. Sci., 121, 404–427.

    Google Scholar 

  • Figarella, C., Negri, G.A. and Guy, O. (1974). Studies on inhibition of two human trypsins. In “Bayer-Symposium V-Proteinase Inhibitors,” H. Fritz, H. Tschesche, L.J. Greene and E. Truscheit, Eds., pp. 213–222, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Flavin, D.F. (1984). Soybean trypsin inhibitors: interaction in humans. Vet. Hum. Toxicol., 26, 36–37.

    CAS  Google Scholar 

  • Frattali, V. (1969). Soybean inhibitors. III. Properties of a low molecular weight soybean proteinase inhibitor. J. Biol. Chem., 25, 274–280.

    Google Scholar 

  • Freed, R.C. and Ryan, D.S. (1978). Note on the modification of the Kunitz soybean trypsin inhibitor during seed germination. Cereal Chem., 55, 534–538.

    CAS  Google Scholar 

  • Freed, R.C. and Ryan, D.S. (1980). Isolation and characterization of genetic variants of the Kunitz soybean trypsin inhibitor. Biochim. Biophys. Acta, 624, 562–572.

    Article  CAS  Google Scholar 

  • Green, G.M. and Lyman, R.L. (1972). Feedback regulation of pancreatic enzymes secretion as a mechanism for trypsin inhibitor-induced hypersecretion in rats. Proc. Soc. Exp. Biol. Med., 140, 6–12.

    CAS  Google Scholar 

  • Green, G.M., Olds, B.A., Matthews, H. and Lyman, R.L. (1973). Protein as a regulator of pancreatic enzyme secretion in the rat. Proc. Soc. Exp. Biol. Med., 192, 1162–1167.

    Google Scholar 

  • Hammond, R.W., Foard, D.E. and Larkins, B.A. (1984). Molecular cloning and analysis of a gene coding for the Bowman-Birk protease inhibitor in soybean. J. Biol. Chem., 9883–9890.

    Google Scholar 

  • Harry, J.B. and Steiner, R.F. (1970). A soybean proeinase inhibitor. Thermodynamic and kinetic parameters of association with enzymes. Eur. J. Biochem., 16, 174–179.

    Article  CAS  Google Scholar 

  • Hartl, P., Tan-Wilson, A.L. and Wilson, K.A. (1985). Proteolysis of Kunitz soybean trypsin inhibitor during germination. Phytochemistry, in press.

    Google Scholar 

  • Hirs, C.H.W. (1967). Performic acid oxidation. Methods Enzymol., 11, 199–203.

    Article  CAS  Google Scholar 

  • Holm, H. and Krogdahl, A. (1982). Problems in predicting the inhibition of human pancreatic proteinases by soybean proteinase inhibitors. In vitro assays employing human, bovine and porcine proteinases. J. Sci. Food Agric., 33, 1164–1171.

    Article  CAS  Google Scholar 

  • Hwang, D.L-R., Lin, K-T.D., Yang, W-K. and Foard, D.E. (1977). Purification, partial characterization, and immunological relationships of multiple low molecular weight protease inhibitors of soybean. Biochim. Biophys. Acta, 495, 369–382.

    Article  CAS  Google Scholar 

  • Johnson, L.A., Devoe, C.W., Hoover, W.J. and Schwenke, J.R. (1980). Inactivation of trypsin inhibitors in aqueous soybean extracts by direct steam infusion. Cereal Chem., 57, 376–379.

    CAS  Google Scholar 

  • Kakade, M.L., Simons, N.R., Liener, I.E. and Lambert, J.W. (1972). Biochemical and nutritional assessment of different varieties of soybeans. J. Agric. Food Chem., 20, 87–90.

    Article  CAS  Google Scholar 

  • Kakade, M.L., Hoffa, D.E. and Liener, I.E. (1974). Contribution of trypsin inhibitors to the deleterious effects of unheated soybeans fed to rats. J. Nutr., 103, 1772–1778.

    Google Scholar 

  • Kassell, B. (1970). Trypsin and chymotrypsin inhibitors from soybeans. Methods Enzymol., 9, 853–862.

    Article  Google Scholar 

  • Kassell, B. and Laskowski, M. (1956). The comparative resistance to pepsin of six naturally occurring trypsin inhibitors. J. Biol. Chem., 219, 203–210.

    CAS  Google Scholar 

  • Katagiri, C. and Shimizu, M. (1983). Trypsin inhibitors of Kurodaizu (Glycine max Merrill forma Kuromame Makino) Part I. Separation and purification of trypsin inhibitors. Shokumotsu Gakkaishi, 38, 17–21.

    CAS  Google Scholar 

  • Kim, H-G., Kim, M-C., Chang, K-Y. and Kin, J-K. (1982). Trypsin inhibitors from various soybean varieties. Korean J. of Food Sci. and Technology, 14, 106–111.

    CAS  Google Scholar 

  • Koide, T. and Ikenaka, T. (1973). Studies on soybean trypsin inhibitors 3. Amino acid sequence of the carboxyl-terminal region and the complete amino acid sequence of the soybean trypsin inhibitor (Kunitz). Eur. J. Biochem., 32, 417–431.

    Article  CAS  Google Scholar 

  • Konijn, A.M., Birk, Y. and Guggenheim, K. (1970). In vitro synthesis of pancreatic enzymes. Effect of soybean trypsin inhibitor. Am. J. Physiol., 218, 1113–1117.

    CAS  Google Scholar 

  • Krogdahl, A. and Holm, H. (1981). Soybean proteinase inhibitors and human proteolytic enzymes: selective inactivation of inhibitors by treatment with human gastric juice. J. Nutr., 111, 2045–2051.

    CAS  Google Scholar 

  • Krogdahl, A. and Holm, H. (1983). Pancreatic proteinases from man, trout, rat, pig, cow, chicken, mink, and fox. Enzyme activities and inhibition by soybean and lima bean proteinase inhibitors. Comp. Biochem. Physiol., B, 74B, 403–409.

    CAS  Google Scholar 

  • Kunitz, M. (1974). Isolation of a crystalline protein compound of trypsin and of soybean trypsin inhibitors. J. Gen. Physiol., 30, 311–320.

    Article  Google Scholar 

  • Laskowski, M. and Kato, I. (1981). Protein inhibitors of proteinases. Ann. Rev. Biochem., 49, 583–626.

    Google Scholar 

  • Laskowski, M. and Sealock, R.W. (1971). Protein proteinase inhibitors — molecular aspects. In “The Enzymes”, 3rd ed., P.D. Boyer, Ed., pp. 376–473, Academic Press, New York.

    Google Scholar 

  • Lebowitz, J. and Laskowski, M. (1962). Potentiometric measurement of protein-protein association constants. Soybean trypsin inhibitor-trypsin association. Biochemistry, 1, 1044–1055.

    Article  CAS  Google Scholar 

  • Madar, Z. (1979). Kinetics of native and modified Bowman-Birk soya bean trypsin inhibitor on growth and enzyme activities of the chick pancreas. J. Nutr., 42, 121–126.

    Article  CAS  Google Scholar 

  • Madden, M.A., Tan-Wilson, A.L. and Wilson, K.A. (1985). Proteolysis of soybean Bowman-Birk trypsin inhibitor during germination. Phytochemistry, in press.

    Google Scholar 

  • Mallory, P.A. and Travis, J. (1973). Human pancreatic enzymes. Characterization of anionic human trypsin. Biochemistry, 12, 2847–2851.

    Article  CAS  Google Scholar 

  • Mallory, P.A. and Travis, J. (1975). Inhibition spectra of the human pancreatic endopeptidases. Am. J. Clin. Nutr., 28, 823–830.

    CAS  Google Scholar 

  • Mancini, G., Carbonara, A.O. and Heremans, J.H. (1965). Immunochemi cal quantisation of antigens by single radial immunodiffusion. Immunochemistry, 2, 234–254.

    Article  Google Scholar 

  • Melmed, R.N. and Bouchier, I.A.D. (1969). Further physiological role for naturally occurring trypsin inhibitors. Evidence for a trophic stimulant of the pancreatic acinar cell. Gut, 10, 973–979.

    Article  CAS  Google Scholar 

  • Melmed, R.N., El-Aaser, A.A.A. and Holt, S.J. (1976). Hypertrophy and hyperplasia of the neonatal rat exocrine pancreas induced by orally administered soybean trypsin inhibitor. Biochim. Biophys. Acta, 421, 280–288.

    Article  CAS  Google Scholar 

  • Oates, P.S., Bruce, N.W. and Morgan, R.G.H. (1984). Pancreatic blood flow in the rat during enlargement, involution and cholecystokinin treatment. Am. J. Physiol., 247, G457–G462.

    CAS  Google Scholar 

  • Odani, S. and Ikenaka, T. (1972). Studies on soybean trypsin inhibitors. IV. Complete amino acid sequence and the anti-proteinase sites of Bowman-Birk soybean proteinase inhibitor. J. Biochem., 71, 839–848.

    CAS  Google Scholar 

  • Odani, S. and Ikenaka, T. (1973a). Scission of soybean Bowman-Birk proteinase inhibitor into two small fragments having either trypsin or chymotrypsin inhibitory activity. J. Biochem., 74, 857–860.

    CAS  Google Scholar 

  • Odani, S. and Ikenaka, T. (1973b). Studies on soybean trypsin inhibitors. VIII. Disulfide bridges in soybean Bowman-Birk proteinase inhibitor. J. Biochem., 74, 697–715.

    CAS  Google Scholar 

  • Odani, S. and Ikenaka, T. (1977a). Studies on soybean trypsin inhibitors. X. Isolation and partial characterization of four soybean double-headed proteinase inhibitors. J. Biochem., 82, 1513–1522.

    CAS  Google Scholar 

  • Odani, S. and Ikenaka, T. (1977b). Studies on soybean trypsin inhibitors. XI. Complete amino acid sequence of soybean trypsin-chymotrypsin-elastase inhibitor, C-II. J. Biochem., 82, 1523–1531.

    CAS  Google Scholar 

  • Odani, S. and Ikenaka, T. (1978). Studies on soybean trypsin inhibitors. XII. Linear sequences of two soybean double-headed trypsin inhibitors, D-II and E-I. J. Biochem., 83, 737–745.

    CAS  Google Scholar 

  • Orf, J.H. and Hymowitz, T. (1979). Genetics of the Kunitz trypsin inhibitor: an antinutritional factor in soybeans. J. Am. Oil Chem. Soc., 56, 722–726.

    Article  CAS  Google Scholar 

  • Orf., J.H., Mies, D.W. and Hymowitz, T. (1977). Qualitative changes of the Kunitz trypsin inhibitor in soybean seeds during germination as detected by electrophoresis. Bot. Gaz., 138, 255–260.

    Article  CAS  Google Scholar 

  • Rackis, J.J. (1965). Physiological properties of soybean trypsin inhibitors and their relationship to pancreatic hypertrophy and growth inhibition of rats. Fed. Proc., 24, 1488–1493.

    CAS  Google Scholar 

  • Rackis, J.J. (1974). Biological and physiological factors in soybeans. J. Amer. Oil Chem. Soc. 51, 161A–174A.

    Article  CAS  Google Scholar 

  • Rackis, J.J. and Gumbmann, M.R. (1981). Protease inhibitors: physiological properties and nutritional significance. In “Antinutrients and Natural Toxicants in Foods,” R.L. Ory, Ed., pp. 203–237, Food and Nutrition Press, Westport, Conn.

    Google Scholar 

  • Richardson, M. (1977). The proteinase inhibitors in plants and microorganisms. Phytochemistry, 16, 159–169.

    Article  CAS  Google Scholar 

  • Ryan, C.A. (1973). Proteolytic enzymes and their inhibitors in plants. Ann. Rev. Plant Physiol., 24, 173–196.

    Article  CAS  Google Scholar 

  • Schwert, G.W. and Takenaka, Y. (l955). A spectrophotometric determination of trypsin and chymotrypsin. Biochim. Biophys. Acta, 16, 570–575.

    Article  Google Scholar 

  • Seidl, D.S. and Liener, I.E. (1971). Identification of the trypsinreactive site of the Bowman-Birk soybean inhibitor. Biochim. Biophys. Acta, 251, 83–93.

    Article  CAS  Google Scholar 

  • Seidl, D.S. and Liener, I.E. (1972a). Identification of the chymotrypsin-reactive site of the Bowman-Birk soybean inhibitor. Biochim. Biophys. Acta, 258, 303–309.

    Article  CAS  Google Scholar 

  • Seidl, D.S. and Liener, I.E. (1972b). Isolation and properties of complexes of the Bowman-Birk soybean inhibitor with trypsin and chymotrypsin. J. Biol. Chem., 247, 3533–3538.

    CAS  Google Scholar 

  • Silva, A.D., Barbosa, C.F. and Portela, F. (1979). Inibidores proteoliticos em variedades de soja. Cientifica, 7, 317–320.

    CAS  Google Scholar 

  • Simpson, R.J., Neuberger, M.R. and Liu, T-Y. (1976). Complete amino acid analysis of proteins from a single hydrolysate. J. Biol. Chem., 251, 1936–1940.

    CAS  Google Scholar 

  • Singh, L., Wilson, C.M. and Hadley, H.H. (1969). Genetic differences in soybean trypsin inhibitors separated by disc electrophoresis. Crop Sci., 9, 489–491.

    Article  CAS  Google Scholar 

  • Stahlhut, R.W. and Hymowitz, T. (1983). Variation in the low molecular weight proteinase inhibitors of soybeans. Crop Sci., 23, 766–769.

    Article  CAS  Google Scholar 

  • Struthers, B.J. and MacDonald, J.R. (1983). Comparative inhibition of trypsins from several species by soybean trypsin inhibitors. J. Nutr., 113, 800–804.

    CAS  Google Scholar 

  • Staswick, R.E., Hermodson, M.A. and Nielsen, N.C. (1981). Identification of the acidic and basic subunit complexes of glycinin. J. Biol. Chem., 256, 8752–8755.

    CAS  Google Scholar 

  • Tan-Wilson, A.L. and Wilson, K.A. (1982). Nature of proteinase inhibitors released from soybeans during imbibition and germination. Phytochemistry, 21, 1547–1551.

    CAS  Google Scholar 

  • Tan-Wilson, A.L., Rightmire, B.R. and Wilson, K.A. (1982). Different rates of metabolism of soybean proteinase inhibitors during germination. Plant Physiol., 70, 493–497.

    Article  CAS  Google Scholar 

  • Tan-Wilson, A.L., Rightmire, B.R. and Wilson, K.A. (1983). Determination of relative antigen-antibody avidities by radial immunodiffusion. J. Immunol. Methods, 61, 99–106.

    Article  CAS  Google Scholar 

  • Tan-Wilson, A.L., Hartl, P., Delfel, N.E., and Wilson, K.A. (1985a). Differential expression of Kunitz and Bowman-Birk soybean proteinase inhibitors in plant and callus tissue. Plant Physiol., 78, 310–314.

    Article  CAS  Google Scholar 

  • Tan-Wilson, A.L., Cosgriff, S.E., Duggan, M.C., Obach, R.S. and Wilson, K.A. (1985). Bowman-Birk proteinase isoinhibitor complements of soybean strains. J. Agric. Food Chem., 133, 389–393.

    Article  Google Scholar 

  • Thanh, V.H. and Shibasaki, K. (1977). Beta-conglycinin from soybean proteins. Isolation and immunological and physiochemical properties of the monomeric forms. Biochim. Biophys. Acta, 490, 370–384.

    Article  CAS  Google Scholar 

  • Travis, J. and Roberts, R. (1969). Human trypsin isolation and physical chemical characterization. Biochemistry, 8, 2884–2889.

    Article  CAS  Google Scholar 

  • Turner, R., Liener, I.E. and Lovrien, R.E. (1975). Equilibria of Bowman-Birk inhibitor association with trypsin and alpha-chymotrypsin. Biochemistry, 14, 275–282.

    Article  CAS  Google Scholar 

  • Wilson, K.A. (1981). The structure, function and evolution of legume proteinase inhibitors. In “Antinutrients and Natural Toxicants in Foods,” R. L. Ory, Ed., pp. 187–202, Food and Nutrition Press, Westport, Conn.

    Google Scholar 

  • Wilson, K.A. and Chen, J.C. (1983). Amino acid sequence of mung bean trypsin inhibitor and its modified forms appearing during germination. Plant Physiol., 71, 341–349.

    Article  CAS  Google Scholar 

  • Wilson, K.A. and Laskowski, M. (1975). The partial amino acid sequence of trypsin inhibitor II from garden bean, Phaseolus vulgaris, with location of the trypsin and elastase reactive sites. J. Biol. Chem., 250, 4261–4267.

    CAS  Google Scholar 

  • Wilson, K.A. and Tan-Wilson, A.L. (1983). Proteinases involved in the degradation of trypsin inhibitor in germinating mung beans. Acta Biochim. Pol., 30, 139–148.

    CAS  Google Scholar 

  • Wilson, K.A., Rightmire, B.R. and Tan-Wilson, A.L. (1985). Involvement of carboxypeptidase in the degration of the mung bean (Vigna radiata) trypsin inhibitor during germination and early seedling growth. Qual. Plant. Plant Foods Hum. Nutr., in press.

    Google Scholar 

  • Yen, J.T., Hymowitz, T., and Jensen, A.H. (1971). Utilization by rats of protein from a trypsin-inhibitor variant soybean. J. Anim. Sci., 33, 1012–1017.

    CAS  Google Scholar 

  • Yen, J.T., Jensen, A.H., and Simon, J. (1977). Effect of dietary raw soybean and soybean trypsin inhibitor on trypsin and chymotrypsin activities in the pancreas and in small intestinal juice of growing swine. J. Nutr., 107, 156–165.

    CAS  Google Scholar 

  • Yoshikawa, M., Kiyohara, T., Iwasaki, T. and Yoshida, I. (1979). Modification of proteinase inhibitor II in adzuki beans during germination. J. Agric. Food Chem., 43, 1989–1990.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Tan-Wilson, A.L., Wilson, K.A. (1986). Relevance of Multiple Soybean Trypsin Inhibitor Forms to Nutritional Quality. In: Friedman, M. (eds) Nutritional and Toxicological Significance of Enzyme Inhibitors in Foods. Advances in Experimental Medicine and Biology, vol 199. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0022-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0022-0_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0024-4

  • Online ISBN: 978-1-4757-0022-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics