Skip to main content

The Relative Importance of Calcium Influx and Efflux via Na-Ca Exchange in Cultured Myocardial Cells

  • Chapter
Cellular Ca2+ Regulation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 232))

  • 50 Accesses

Abstract

In the intact myocardial cell, Ca homeostasis consists of several interrelated processes: Ca influx across the sarcolemma; Ca uptake and release by intracellular organelles, notably sarcoplasmic reticulum and mitochondria; Ca binding to and release from intracellular Ca binding proteins; and transsarcolemmal Ca efflux. Since the work of Niedergerke1 it been recognized that Ca influx and efflux increase with electrical activation. Voltage clamp studies have suggested that some of the Ca influx involved in the activation of contraction occurs via the slow Ca channel.2 This Ca is believed to trigger release of Ca from intracellular Ca stored within the sarcoplasmic reticulum,3 resulting in a rise of free-Ca ion sufficient to produce contraction of the myofilaments. It is possible that Ca may enter the cell under some circumstances via the Na-Ca exchange carrier.4 However, the relative magnitudes of Ca influx into the cell via the slow Ca channel, and via Na-Ca exchange during normal excitation-contraction coupling, have not been established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Niedergerke, R., Movement of Ca in beating ventricles of the frog heart, J. Physiol. (Lond.) 167:551 (1963).

    CAS  Google Scholar 

  2. Reuter, H. The dependence of slow inward current in Purkinje fibers on the extracellular calcium concentration, J. Physiol. (Lond.) 192:479 (1967).

    CAS  Google Scholar 

  3. Fabiato, A., Myoplasmic free calcium concentration reached during the twitch of an intact isolated cardiac cell and during calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned cardiac cell from the adult rat or rabbit ventricle, J. Gen. Physiol. 78:457 (1981).

    Article  PubMed  CAS  Google Scholar 

  4. Glitsch, H.G., Reuter, H., Scholtz, H., The effect of the internal sodium concentration on calcium flux in isolated guinea pig ventricles, J. Physiol. (Lond.) 209:25 (1970).

    CAS  Google Scholar 

  5. Reuter, H., and Seitz, N., The dependence of calcium efflux from cardiac muscle on temperature and external ion composition, J. Physiol. (Lond.) 195:451 (1968).

    CAS  Google Scholar 

  6. Blaustein, M.P., and Hodgkin, A.L., The effect of cyanide on the efflux of calcium from squid axons, J. Physiol. (Lond.) 200:497 (1969).

    CAS  Google Scholar 

  7. Caroni, P., and Carafoli, E., An ATP-dependent Ca2+ pumping system in dog heart sarcolemma, Nature 283:765 (1980).

    Article  PubMed  CAS  Google Scholar 

  8. Barry, W.H., Rasmussen, C.A.F., Jr., Ishida, H., and Bridge, J.H.B., External Na-independent Ca extrusion in cultured ventricular cells, J. Gen. Physiol. 88:393, (1986).

    Article  PubMed  CAS  Google Scholar 

  9. Barry, W.H., and Smith, T.W., Mechanisms of transmembrane calcium movements in cultured chick embryo ventricular cells, J. Physiol. (Lond.) 324:243 (1982).

    Google Scholar 

  10. Grynkiewicz, G., Poenie, M., and Tsien, R.Y., A new generation of Ca2+ indicators with greatly improved fluorescence properties, J. Biol. Chem. 260:3440 (1985).

    PubMed  CAS  Google Scholar 

  11. Peeters, G.A. and Barry, W.H., Changes in [Ca2+]i during spontaneous contraction and zero [Na]o-induced contracture in cultured ventricular cells detected with indo-1, J. Gen. Physiol. 88:46a (1986).

    Google Scholar 

  12. Mullins, L.T., The generation of electric currents in cardiac fibers by a Na-Ca exchange, Am. J. Physiol. 236:C103 (1979).

    PubMed  CAS  Google Scholar 

  13. Bridge, J.H.B., Ishida, H., Menlove, R.L., and Barry, W.H. An estimate of the stoichiomatic coefficient of Na-Ca exchange in intact cultured ventricular cells, Submitted.

    Google Scholar 

  14. Eisner, D.A., and Lederer, W.J., Na-Ca exchange stoichiometry and electrogenicity, Am. J. Physiol. 248:C189 (1985).

    PubMed  CAS  Google Scholar 

  15. Reeves, J.P. and Hale, C.C., Stoichiometry of the cardiac Na-Ca exchange system, J. Biol. Chem. 259:7733 (1984).

    PubMed  CAS  Google Scholar 

  16. Desilets, M. and Baumgarten, CM., Measurements of K+, Na+, and Cl activities in myocytes isolation rabbit heart, Biophys. J. 47:462a (1985).

    Google Scholar 

  17. Rasmussen, C.A.F., Jr., Sutko., J.L., and Barry, W.H., Effects of ryanodine and caffeine on contractility, membrane voltage, and calcium exchange in cultured heart cells, Circ. Res. (1987) In Press.

    Google Scholar 

  18. Nako, M., Shepherd, N., Bridge, J.H.B, and Gadsky, D.C., Membrane currents generated by Na-Ca exchange is isolated heart cells, Fed. Proc. 45(4):770 (1986).

    Google Scholar 

  19. Chapman R.A., Coray, A., and McGuigan, J.H.S., Sodium/calcium exchanger in mammalian ventricular muscle: a study with sodium-sensitive microelectrodes, J. Physiol. (Lond.) 343:253 (1983).

    CAS  Google Scholar 

  20. Reuter, H., Divalent cations as charge carriers in excitable membranes, Prog. Biophys. Mol. Biol. 26:7 (1973).

    Article  Google Scholar 

  21. Phillipson, K.D. and Ward, R., Ca2+ transport capacity of sarcolemmal Na+-Ca2+ exchange. Extra-polation of vesicle data to in vivo conditions, J. Mol. Cell. Cardiol. 18:943 (1986).

    Article  Google Scholar 

  22. Hasin, Y., and Barry, W.H., Comparison of simultaneous electrophysiologic and mechanical effects of verapamil and nifedipine in cultured chick embryo ventricular cells, J. Mol. Cell. Cardiol. In Press.

    Google Scholar 

  23. Miura, D.S., Biedert, S. and Barry, W. H., Effects of calcium overload on relaxation in cultured heart cells, J. Mol. Cell. Cardiol. 13:949 (1981).

    Article  PubMed  CAS  Google Scholar 

  24. Cleeman L., Pizarro, G., and Morad, M., Optical measurements of extracellular calcium depletion during a single heart beat, Science 226:172 (1984).

    Article  Google Scholar 

  25. Murphy, E., Wheeler, D.M., Le Furgey, A., Jacob, R., Lobaugh, L.A., and Liebermann, M., Coupled sodium-calcium transport in cultured chick heart cells, Am. J. Physiol. 250:C442 (1986).

    PubMed  CAS  Google Scholar 

  26. Noble, D., The surprising heart: a recent review of progress in cardiac electrophysiology, J. Physiol (Lond.) 353:1 (1984).

    CAS  Google Scholar 

  27. Siegl, P.K.S., Cragoe, E.J., Jr., Trumble, M.J. and Kaczorowski, G.J., Inhibition of Na+-Ca2+ exchange in membrane vesicle and papillary muscle preparations from guinea pig heart by analogs of amiloride. Proc. Natl. Acad. Sci. 81:3238 (1984).

    Article  PubMed  CAS  Google Scholar 

  28. Bielefeld D.R., Hadley, R.W., Vassile, P.M., and Hume, J.R., Membrane electrical properties of vesicular Na-Ca exchange inhibitors in single atrial myocytes, Circ. Res. 59:381 (1986).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Barry, W.H., Bridge, J.H.B. (1988). The Relative Importance of Calcium Influx and Efflux via Na-Ca Exchange in Cultured Myocardial Cells. In: Pfeiffer, D.R., McMillin, J.B., Little, S. (eds) Cellular Ca2+ Regulation. Advances in Experimental Medicine and Biology, vol 232. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0007-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0007-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0009-1

  • Online ISBN: 978-1-4757-0007-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics