Advertisement

Monovalent Cation Antiport Reactions in Isolated Mitochondria

  • Gerald P. Brierley
  • Dennis W. Jung
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 232)

Abstract

One of the postulates of Mitchell’s chemiosmotic coupling hypothesis (55–57) is that the mitochondrion contains transport components that permit the movement of anions and cations across the inner membrane. The presence of such transport reactions is now well-established, as is the concept that these ion fluxes are secondary to the generation of an electrochemical H+ gradient (protonmotive force) by the respiratory chain. There are clear indications that the inner membrane contains at least three different antiporters that transport monovalent cations. These are the Na+/H+, the Na+/Ca2+, and the K+/H+ antiporters. The first two of these components appear to be present in an active form in unmodified mitochondria, whereas the K+/H+ anti porter is latent and must be activated by specific alterations to the mitochondrion. The Na+/H+ and Na+/Ca2+ antiporters do not appear to transport K+, whereas the so called K+/H+ component will accept Na+, K+ and Li+ as substrates. This review summarizes the evidence for the presence of each of these transport components, their properties, and the status of current work on their characterization, particularly with respect to several areas of controversy.

Keywords

Liver Mitochondrion Monovalent Cation Heart Mitochondrion Transport Component Intact Mitochondrion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azzone, G.F., Bortoiotto, F. and Zanotti, A. (1978) FEBS Lett. 96, 135–140.PubMedCrossRefGoogle Scholar
  2. 2.
    Azzone, G.F., Zanotti, A. and Colonna, R. (1978) FEBS Lett. 96, 141–147.PubMedCrossRefGoogle Scholar
  3. 3.
    Bernardi, P. and Azzone, G.F. (1983) Biochim. Biophys. Acta 724, 212–223.PubMedCrossRefGoogle Scholar
  4. 4.
    Bernardi, P., Pozzan, T. and Azzone, G.F. (1982) J. Bioenerg. and Biomembr. 14., 387–403.CrossRefGoogle Scholar
  5. 5.
    Brand, M. (1985) Biochem. J. 229, 161–166.PubMedGoogle Scholar
  6. 6.
    Brierley, G.P. (1976) Mol. Cell. Biochem. 10, 41–62.PubMedCrossRefGoogle Scholar
  7. 7.
    Brierley, G.P. (1978) In: The Molecular Biology of Cell Membranes, Fleischer, S., Hatefi, Y., MacLennan, D.H. and Tzagaloff, A. (eds.) Plenum Pub. Co., pp. 295–308.Google Scholar
  8. 8.
    Brierley, G.P. (1983) In: Pathobiology of Cell Membranes, Vol. 3, Trump, B.F. and Arstila, A.V. (eds.) Academic Press, N.Y. p 23–61.Google Scholar
  9. 9.
    Brierley, G.P. and Jung, D.W. (1980) Pharmac. Ther. 8, 193–216.CrossRefGoogle Scholar
  10. 11.
    Brierley, G.P., Jurkowitz, M.S., Farooqui, T. and Jung, D.W. (1984) J. Biol. Chem. 259, 14672–14678.PubMedGoogle Scholar
  11. 12.
    Carafoli, E. (1982) In: Carafoli, E. (ed.) Membrane Transport of Calcium. Academic Press, London, p 109–139.Google Scholar
  12. 13.
    Chavez, E., Jung, D.W. and Brierley, G.P. (1977) Arch. Biochem. Biophys. 183; 460–470.PubMedCrossRefGoogle Scholar
  13. 14.
    Clark, A.F. and Roman, I.J. (1980) J. Biol. Chem. 255, 6556–6558.PubMedGoogle Scholar
  14. 15.
    Cockrell, R.S. (1973) J. Biol. Chem. 248, 6828–6833.PubMedGoogle Scholar
  15. 16.
    Corkey, B.E., Duszynski, J., Rich, T.L., Matschinsky, B. and Williamson, J.R. (1986) J. Biol. Chem. 261, 2567–2574.PubMedGoogle Scholar
  16. 17.
    Crompton, M. and Heid, I. (1978) Eur. J. Biochem. 91, 599–608.PubMedCrossRefGoogle Scholar
  17. 18.
    Crompton, M., Capano, M. and Carafoli, E. (1976) Eur. J. Biochem. 69, 453–462.CrossRefGoogle Scholar
  18. 19.
    Crompton, M., Kunzi, M. and Carafoli, E. (1977) Eur. J. Biochem. 79, 549–558.PubMedCrossRefGoogle Scholar
  19. 20.
    Crompton, M., Moser, R., Lundi, H. and Carafoli, E. (1978) Eur. J. Biochem. 82, 25–31.PubMedCrossRefGoogle Scholar
  20. 21.
    Crompton, M., Heid, I. and Carafoli, E. (1980) FEBS Lett. 115, 257–259.PubMedCrossRefGoogle Scholar
  21. 22.
    Denton, R.M. and McCormack, J.G. (1985) Am. J. Physiol. 249, E543–E554.PubMedGoogle Scholar
  22. 23.
    Dordick, R.S., Brierley, G.P. and Garlid, K.D. (1980) J. Biol. Chem. 255, 10299–10305.PubMedGoogle Scholar
  23. 24.
    Douglas, M.G. and Cockrell, R.S. (1974) J. Biol. Chem. 249, 5464–5471.PubMedGoogle Scholar
  24. 25.
    Dubinsky, W., Kandrach, A. and Racker, E. (1979) In: Lee, C.P., Schatz, S. and Ernster, L. Eds) Membrane Bioenergetics, Addison-Wesley Pub. Co., Reading, Mass. p 267–280.Google Scholar
  25. 26.
    Duszynski, J. and Wojtczak, L. (1977) Biochem. Biophys. Res. Comm. 74, 417–424.PubMedCrossRefGoogle Scholar
  26. 27.
    Gamble, J.L., Jr and Hackenbrock, C.R. (1969) Fed. Proc. 28, 283a.Google Scholar
  27. 28.
    Garlid, K.D. (1978) Biochem. Biophys. Res. Commun. 83, 1450–1455.PubMedCrossRefGoogle Scholar
  28. 29.
    Garlid, K.D. (1979) Biochem. Biophys. Res. Commun. 87, 842–847.PubMedCrossRefGoogle Scholar
  29. 30.
    Garlid, K.D. (1980) J. Biol. Chem. 255, 11273–11279.PubMedGoogle Scholar
  30. 31.
    Garlid, K.D., DiResta, D.J., Beavis, A.D. and Martin, W.H. (1986) J. Biol. Chem. 261, 1529–1535.PubMedGoogle Scholar
  31. 32.
    Hansford, R.G. (1985) Rev. Physiol. Biochem. Pharmacol. 102, 1–72.PubMedCrossRefGoogle Scholar
  32. 33.
    Harding, D. and Fry, C. (1985) Biochim. Biophys. Acta. 847, 136–139.PubMedCrossRefGoogle Scholar
  33. 34.
    Harris, E.J. and Heffron, J.J.A. (1982) Arch. Biochem. Biophys. 218, 531–539.PubMedCrossRefGoogle Scholar
  34. 35.
    Hayat, L.H. and Crompton, M. (1982) Biochem. J. 202, 509–518.PubMedGoogle Scholar
  35. 36.
    Hayat, L.H. and Crompton, M. (1985) FEBS Lett. 182, 281–286.PubMedCrossRefGoogle Scholar
  36. 37.
    Heffron, J.J.A. and Harris, E.J.(1981) Trans. Biochem. Soc. 9, 82–83.Google Scholar
  37. 38.
    Jung, D.W. and Brierley, G.P. (1979) Plant Physiol. 259, 948–953.CrossRefGoogle Scholar
  38. 39.
    Jung, D.W. and Brierley, G.P. (1984) J. Biol. Chem. 259, 6904–6911.PubMedGoogle Scholar
  39. 40.
    Jung, D.W. and Brierley, G.P. (1986) J. Biol. Chem. 261, 6408–6415.PubMedGoogle Scholar
  40. 41.
    Jung, D.W., Chavez, E. and Brierley, G.P. (1977) Arch. Biochem. Biophys. 183, 452–459.PubMedCrossRefGoogle Scholar
  41. 42.
    Jung, D.W., Shi, G-Y, and Brierley, G.P. (1981) Arch. Biochem. Biophys. 209, 356–361.PubMedCrossRefGoogle Scholar
  42. 43.
    Jurkowitz, M.S. and Brierley, G.P. (1982) J. Bioenerg. Biomembr. 14, 435–449.PubMedCrossRefGoogle Scholar
  43. 44.
    Jurkowitz, M.S., Altschuld, R.A., Brierley, G.P. and Cragoe, E.J., Jr. (1983) FEBS Lett. 162 262–265.PubMedCrossRefGoogle Scholar
  44. 45.
    Krulwich, T.A. (1986) J. Membrane Biol. 89, 113–125.CrossRefGoogle Scholar
  45. 46.
    Lukacs, S.L. and Fonyo, A. (1986) Biochim. Biophys. Acta 858, 125–134.PubMedCrossRefGoogle Scholar
  46. 47.
    Martin, W.H. (1983) Ph.D. dissertation, Medical College of Ohio, Toledo.Google Scholar
  47. 48.
    Martin, W.H. and Garlid, K.D. (1983) Fed. Proc. 42, 1278 abs.Google Scholar
  48. 49.
    Martin, W.H., Beavis, A.D. and Garlid, K.D. (1984) J. Biol. Chem. 259, 2062–2065.PubMedGoogle Scholar
  49. 50.
    Martin, W.H., DiResta, D.J. and Garlid, K.D. (1986) J. Biol. Chem. 261, 12300–12305.PubMedGoogle Scholar
  50. 51.
    Matlib, M.A. (1986) Biophys. J. 49, 206a.Google Scholar
  51. 52.
    Matlib, M.A. and Schwartz, A. (1983) Life Sci. 32, 2837–2842.PubMedCrossRefGoogle Scholar
  52. 53.
    Matlib, M.A., Lee, S-W., Depover, A. and Schwartz, A. (1983) Eur. J. Pharmacol. 89, 327–328.PubMedCrossRefGoogle Scholar
  53. 54.
    McCormack, J.B. (1985) Biochem. J. 231, 597–608.PubMedGoogle Scholar
  54. 55.
    Mitchell, P. (1966) Glynn research, Bodmin, Cornwall.Google Scholar
  55. 56.
    Mitchell, P. (1968) Glynn Research, Bodmin, Cornwall.Google Scholar
  56. 57.
    Mitchell, P. (1970) Symp. Soc. Gen. Microbiol. 20, 121–166.Google Scholar
  57. 58.
    Mitchell, P. and Moyle, J. (1967) Biochem. J. 105, 1147–1162.PubMedGoogle Scholar
  58. 59.
    Mitchell, P. and Moyle, J. (1969) Eur. J. Biochem. 9, 149–155.PubMedCrossRefGoogle Scholar
  59. 60.
    Moore, A.L. and Wilson, S.B. (1977) J. Exp. Bot. 28, 607–618.CrossRefGoogle Scholar
  60. 61.
    Nakashima, R.A. and Garlid, K.D. (1982) J. Biol. Chem. 257, 9252–9254.PubMedGoogle Scholar
  61. 62.
    Nakashima, R.A., Dordick, R.S. and Garlid, K.D. (1982) J. Biol. Chem. 257, 12540–12545.PubMedGoogle Scholar
  62. 63.
    Nicchitta, C.V. and Williamson, J.R. (1984) J. Biol. Chem. 259, 12978–12983.PubMedGoogle Scholar
  63. 64.
    Nicholls, D.G. (1978) Biochem. J. 170, 511–522.PubMedGoogle Scholar
  64. 65.
    Nicholls, D.G. and Ackerman, K. (1982) Biochim. Biophys. Acta 683, 57–88.PubMedCrossRefGoogle Scholar
  65. 66.
    Pansani, A., Guerrieri, F. and Papa, S. (1978) Eur. J. Biochem. 92, 545–551.CrossRefGoogle Scholar
  66. 67.
    Papa, S. Guerrieri, F., Simone, S., Lorusso, M. and Larosa, D. (1973) Biochim. Biophys. Acta 292, 20–38.PubMedCrossRefGoogle Scholar
  67. 68.
    Pfeiffer, D.R. and Lardy, H.R. (1976) Biochemistry 15, 935–943.PubMedCrossRefGoogle Scholar
  68. 69.
    Pyant, K.S. and Brierley, G.P. (1982) Experientia 38, 1202–1204.PubMedCrossRefGoogle Scholar
  69. 70.
    Reed, P.W. and Lardy, H.A. (1972) J. Biol. Chem. 247, 6970–6977.PubMedGoogle Scholar
  70. 71.
    Roman, I., Gomaj, P., Nowicka, C. and Angielski, S. (1979) Eur. J. Biochem. 102, 615–623.PubMedCrossRefGoogle Scholar
  71. 72.
    Rosen, B.P. and Futai, M. (1980) FEBS Lett. 117, 39–43.PubMedCrossRefGoogle Scholar
  72. 73.
    Saris, N.E. and Akerman, K.E.O. (1980) Cur. Topics Bioenergetics 10, 103–179.Google Scholar
  73. 74.
    Shi, G-Y., Jung, D.W., Garlid, K.D. and Brierley, G.P. (1980) J. Biol. Chem. 255, 10306–10311.PubMedGoogle Scholar
  74. 75.
    Vaghy, P.L., Johnsbn, J.D., Matlib, M.A., Wang, T. and Schwartz, A. (1982) J. Biol. Chem. 257, 6000–6002.PubMedGoogle Scholar
  75. 76.
    Williamson, J.R., Cooper, R.H. and Hoek, J.B. (1981) Biochim. Biophys. Acta 639, 243–295.PubMedCrossRefGoogle Scholar
  76. 77.
    Wolkowicz, P., Michael, L.H., Lewis, R.M. and McMillan-Wood, J. (1983) Am. J. Physiol. 244, H644–H651.PubMedGoogle Scholar
  77. 78.
    Zilberstein, D., Ophir, I.J., Padan, E. and Schuldiner, S. (1982) J. Biol. Chem. 257, 3692–3696.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Gerald P. Brierley
    • 1
  • Dennis W. Jung
    • 1
  1. 1.Department of Physiological ChemistryThe Ohio State University Medical CenterColumbusUSA

Personalised recommendations