Hormonal Regulation of Intramitochondrial Ca2+ and Oxidative Metabolism in Mammalian Tissues

  • James G. McCormack
  • Richard M. Denton
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 232)


In mammalian cells, many of the hormones which stimulate energy-requiring processes such as contraction or secretion do so by causing increases in the cytoplasmic concentration of Ca2+ (1). The increased supply of ATP which is thus required is achieved by a concomitant stimulation of oxidative metabolism by the hormones (2). However, in many of these instances there appear to be little or no decreases or even increases in the cellular ATP/ADP and NADH/NAD+ concentration ratios, and therefore this raises the question as to how these increases in oxidative metabolism are achieved. This article will review some of the growing evidence which suggests that at least a part of the mechanism may involve an increase in the concentration of Ca2+ in the mitochondrial matrix and the resultant activation of three key Ca2+-sensitive intramitochondrial dehydrogenases. All of these enzymes produce NADH and it is argued that this increased NADH production may be an important means whereby cells can increase oxidative metabolism yet maintain high ATP/ADP ratios. Another important consequence arising from such a scheme is that it suggests that the primary function of the Ca2+ -transport system of the mitochondrial inner membrane under normal physiological conditions in mammalian cells is to relay changes in cytoplasmic Ca2+ concentrations into the mitochondrial matrix and, hence, to control the concentration of Ca2+ in this compartment rather than to buffer or set cytoplasmic Ca2+ concentrations as suggested by others (see 3,4).


Oxidative Metabolism Mitochondrial Matrix Sensitive Property Cytoplasmic Concentration United Kingdom Introduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Rasmussen and P. Q. Barrett, 1984, Physiol. Rev., 64:938.PubMedGoogle Scholar
  2. 2.
    R. M. Denton and J. G. McCoraack, 1985, Am. J. Physiol., 249:E543.PubMedGoogle Scholar
  3. 3.
    G. Fiskum and A. L. Lehninger, 1982, in: “Calcium and Cell Function,” W. Y. Cheung, ed., Academic Press, New York, Vol. 2, pp. 38–80.Google Scholar
  4. 4.
    K. E. O. Akerman and D. G. Nicholls, 1983, Rev. Phyusiol. Biochem. Pharmacol., 95:149.CrossRefGoogle Scholar
  5. 5.
    R. M. Denton, P. J. Randle, and B. R. Martin, 1972, Biochem. J., 128:161.PubMedGoogle Scholar
  6. 6.
    R. M. Denton, D. A. Richards, and J. G. Chin, 1978, Biochem. J., 176:899.PubMedGoogle Scholar
  7. 7.
    J. G. McCormack and R. M. Denton, 1979, Biochem. J., 180:533.PubMedGoogle Scholar
  8. 8.
    J. G. McCormack and R. M. Denton, 1981, Biochem. J., 196:619.PubMedGoogle Scholar
  9. 9.
    R. M. Denton, and J. G. McCormack, 1980, FEBS Lett., 119:1.PubMedCrossRefGoogle Scholar
  10. 10.
    R. G. Hansford, 1985, Rev. Physiol. Biochem. Pharmacol., 102:1.PubMedCrossRefGoogle Scholar
  11. 11.
    J. G. McCormack and R. M. Denton, 1980, Biochem. J., 190:95.PubMedGoogle Scholar
  12. 12.
    C. V. Nicchitta and J. R. Williamson, 1984, J. Biol. Chem., 254:12978.Google Scholar
  13. 13.
    M. Crompton and I. Roos, 1985, Biochem. Soc. Trans., 13:667.PubMedGoogle Scholar
  14. 14.
    R. M. Denton, J. G. McCormack, and N. J. Edgell, 1980, Biochem. J., 190:107.PubMedGoogle Scholar
  15. 15.
    J. G, McCormack, 1985, Bioohem. J., 231:581.Google Scholar
  16. 16.
    A. P. Somlyo, M. Bond, and A. V. Somlyo, 1985, Nature, 314:622.PubMedCrossRefGoogle Scholar
  17. 17.
    G. L. Becker, G. Fiskum, and A. L. Lehninger, 1980, J. Biol. Chem., 255:9009.PubMedGoogle Scholar
  18. 18.
    R. Charest, P. F. Blackmore, B. Berthon, and J. H. Exton, 1983, J. Biol. Chem., 258:8769.PubMedGoogle Scholar
  19. 19.
    J. G. McCormack and R. M. Denton, 1981, Biochem. J., 194:639.PubMedGoogle Scholar
  20. 20.
    J. G. McCormack, 1985, Biochem. J., 231:597.PubMedGoogle Scholar
  21. 21.
    J. G. McCormack, and P. J. England, 1983, Biochem. J., 214:581.PubMedGoogle Scholar
  22. 22.
    J. G. McComack and R. M. Denton, 1984, Biochem. J., 218:235.Google Scholar
  23. 23.
    F. Assimacopoulos-Jeannet, J. G. McCormack, and B. Jeanrenaud, 1986, J. Biol. Chem., 261:8799.PubMedGoogle Scholar
  24. 24.
    M. Crompton, P. Kessar, and I. Al-Nasser, 1983, Biochem. J., 216:333.PubMedGoogle Scholar
  25. 25.
    S. E. Marshall, J. G. McCormack, and R. M. Denton, 1984, Biochem. J., 218:249.PubMedGoogle Scholar
  26. 26.
    N. M. Woods, K. S. R. Cuthbertson, and P. H. Cobbold, 1986, Nature. 319:600.PubMedCrossRefGoogle Scholar
  27. 27.
    W. M. Taylor, W. Prpic, J. H. Exton, and F. L. Bygrave, 1980, Biochem. J., 188:443.PubMedGoogle Scholar
  28. 28.
    T. P. Goldstone and M. Crompton, 1982, Biochem. J., 204:369.PubMedGoogle Scholar
  29. 29.
    P. T. Quinlan and A. P. Halestrap, 1986, Biochem. J., 236:789.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • James G. McCormack
    • 1
  • Richard M. Denton
    • 2
  1. 1.Department of BiochemistryUniversity of LeedsLeedsUK
  2. 2.Department of BiochemistryUniversity of Bristol Medical SchoolBristolUK

Personalised recommendations