Permeability Pathways of Ca2+ Efflux from Mitochondria: H+ Specificity and Reversibility of the Permeability Defect

  • Douglas R. Pfeiffer
  • Kimberly M. Broekemeier
  • Urule Igbavboa
  • Martin Reers
  • William W. RileyJr.
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 232)


During the 1970’s it was established that the inner membrane of isolated mitochondria from adrenal cortex, heart, and liver can display an unusually high permeability to small molecules and ions following the imposition of certain metabolic conditions (1–10). Generally, what is required to produce the permeable inner membrane state is energy-dependent Ca2+ accumulation preceding or following the administration of another agent which is often referred to as a “Ca2+ -releasing agent” (11–14). Substances possessing “Ca2+-releasing agent” activity normally lack detergent properties and are diverse with respect to their chemical properties and biological activities. The “Ca2+-releasing agents” investigated by our group include N-ethylmaleimide (5, 6, 11, 13, 15), t-butylhydroperoxide (14–16), oxalacetate, (11), inorganic phosphate (11, 13), rhein (16), and hypolipidemic drugs such as WY-14643 and dofibric acid (17).


Liver Mitochondrion Malignant Hyperthermia Matrix Space Permeability Defect Succinate Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. R. Pfeiffer and T. T. Tchen, 1973, The role of Ca2+ in control of malic enzyme activity in bovine adrenal cortex mitochondria, Biochem. Biophys. Res. Commun., 50:807.PubMedCrossRefGoogle Scholar
  2. 2.
    D. R. Pfeiffer and T. T. Tchen, 1975, The activation of adrenal cortex mitochondrial malic enzyme by Ca2+ and Mg2+, Biochemistry, 14:89.PubMedCrossRefGoogle Scholar
  3. 3.
    D. R. Hunter, R. A. Haworth, and J. H. Southard, 1976, Relationship between configuration, function and permeability in calcium-treated mitochondria, J. Biol. Chem., 251:5069.PubMedGoogle Scholar
  4. 4.
    D. R. Pfeiffer, T. H. Kuo, and T. T. Tchen, 1976, Some effects of Ca2+, Mg2+ and Mn2+ on the ultrastructural, light-scattering properties and malic enzyme activity of adrenal cortex mitochondria, Arch. Biochem. Biophvs., 176:556.CrossRefGoogle Scholar
  5. 5.
    D. R. Pfeiffer, R. F. Kauffman, and H. A. Lardy, 1978, Effects of N-ethylmaleimide on the limited uptake of Ca2+, Mn2+ and Sr2+ by rat liver mitochondria, J. Biol. Chem., 253:4165.PubMedGoogle Scholar
  6. 6.
    D. R. Pfeiffer, P. C. Schmid, M. C. Beatrice, and H. H. O. Schmid, 1979, Intramitochondrial phospholipase activity and the effects of Ca2+ plus N-ethylmaleimide on mitochondrial function, J. Biol. Chem., 254:11485.PubMedGoogle Scholar
  7. 7.
    D. R. Hunter and R. A. Haworth, 1979, The Ca2+-induced membrane transition in mitochondria; I. the protective mechanisms, Arch. Biochem. Biophys., 195:453.PubMedCrossRefGoogle Scholar
  8. 8.
    R. A. Haworth and D. R. Hunter, 1979, The Ca2+-induced membrane transition in mitochondria; II. nature of the trigger site, Arch. Biochem. Biophvs.. 195:460.CrossRefGoogle Scholar
  9. 9.
    D. R. Hunter and R. A. Haworth, 1979, The Ca2+-induced membrane transition in mitochondria; III. transitional Ca2+ release, Arch. Biochem. Biophys., 195:468.PubMedCrossRefGoogle Scholar
  10. 10.
    E. J. Harris, M. Al-Shaikhaly, and H. Baum, 1979, Stimulation of mitochondrial calcium ion efflux by thiol-specific reagents and by thyroxine. The relationship to adenosine diphosphate retention and to mitochondrial permeability, Biochem. J. 182:455.PubMedGoogle Scholar
  11. 11.
    M. C. Beatrice, J. W. Palmer, and D. R. Pfeiffer, 1980, The relationship between mitochondrial membrane permeability, membrane potential, and the retention of Ca2+ by mitochondria, J. Biol. Chem., 255:8663.PubMedGoogle Scholar
  12. 12.
    E. J. Harris and H. Baum, 1980, Production of thiol groups and retention of calcium ions by cardiac mitochondria, Biochem, J., 186:725.Google Scholar
  13. 13.
    J. W. Palmer and D. R. Pfeiffer, 1981, The control of Ca2+ release from heart mitochondria, J. Biol. Chem.. 256:6742.PubMedGoogle Scholar
  14. 14.
    M. C. Beatrice, D. L. Stiers, and D. R. Pfeiffer, 1982, Increased permeability of mitochondria during Ca2+ release induced by t-butylhydroperoxide or oxalacetate. The effect of ruthenium red, J. Biol. Chem. 257:7161.PubMedGoogle Scholar
  15. 15.
    W. W. Riley, Jr. and D. R. Pfeiffer, 1985, Relationships between Ca2+ release, Ca2+ cycling, and Ca2+-mediated permeability changes in mitochondria, J. Biol. Chem., 260:12416.PubMedGoogle Scholar
  16. 16.
    M. C. Beatrice, D. L. Stiers, and D. R. Pfeiffer, 1984, The role of glutathione in the retention of Ca2+ by liver mitochondria, J. Biol. Chem., 259:1279.PubMedGoogle Scholar
  17. 17.
    W. W. Riley, Jr. and D. R. Pfeiffer, 1986, The effect of Ca2+ and acyl-Coenzyme A:lysophospholipid acyltransferase inhibitors on permeability properties of the liver mitochondrial inner membrane, J. Biol. Chem., 261:14018.PubMedGoogle Scholar
  18. 18.
    D. R. Pfeiffer, J. W. Palmer, M. C. Beatrice, and D. L. Stiers, 1983, The mechanism and regulation of Ca2+ efflux from mitochondria, in: “The Biochemistry of Metabolic Processes,” D. F. L. Lenon et al., eds., Elsevier North-Holland, Inc., New York, pp. 67–80.Google Scholar
  19. 19.
    K. M. Broekemeier, P. C. Schmid, H. H. O. Schmid, and D. R. Pfeiffer, 1985, Effects of phospholipase A2 inhibitors on ruthenium redinduced Ca2+ release from mitochondria, J. Biol. Chenu, 260:105.Google Scholar
  20. 20.
    T. Okayasu, M. T. Curtis, and J. L. Farber, 1985, Structural alterations of the inner mitochondrial membrane in ischemic liver cell injury, Arch. Biochem. Biophvs., 236:638.CrossRefGoogle Scholar
  21. 21.
    P. E. Starke, J. B. Hoek, and J. L. Farber, 1986, Calcium-dependent and calciurn-independent mechanisms of irreversible cell injury in cultured hepatocytes, J. Biol. Chem., 261:3006.PubMedGoogle Scholar
  22. 22.
    J. R. Aprille, 1977, Reye’s syndrome: patient serum alters mitochondrial function and morphology in vitro, Science, 197:908.PubMedCrossRefGoogle Scholar
  23. 23.
    T. Y. Segalman and C. P. Lee, 1982, Reye’s syndrome: plasma-induced alterations in mitochondrial structure and function, Arch. Biochem. Biophvs. 214:522.CrossRefGoogle Scholar
  24. 24.
    K.-Sa You, 1983, Salicylate and mitochondrial injury in Reye’s syndrome, 1983, Science, 221:163.PubMedCrossRefGoogle Scholar
  25. 25.
    M. E. Martens, C. H. Chang, and C. P. Lee, 1986, Reye’s syndrome: mitochondrial swelling and Ca2+ release induced by Reye’s plasma, allantoin, and salicylates, Arch. Biochem. Biophvs. 244:773.CrossRefGoogle Scholar
  26. 26.
    K. S. Cheah and A. M. Cheah, 1981, Skeletal muscle mitochondrial phospholipase A2 and the interaction of mitochondrial and sarcoplasmic reticulum in porcine malignant hyperthermia, Biochim. Biophys. Acta, 638:40.PubMedCrossRefGoogle Scholar
  27. 27.
    K. S. Cheah, 1984, Skeletal-muscle mitochondria and phospholipase A2 in malignant hyperthermia, Biochem. Soc. Trans., 12:358.PubMedGoogle Scholar
  28. 28.
    P. C. Schmid, D. R. Pfeiffer, and H. H. O. Schmid, 1981, Quantitation of lysophosphatidylethanolamine in the nanomole range, J. Lipid Res., 22:882.PubMedGoogle Scholar
  29. 29.
    A. Boveris, R. Oshino, M. Erecinska, and B. Chance, 1971, Reduction of mitochondrial components by durohydroquinone, Biochim. Biophys. Acta, 245:1.PubMedCrossRefGoogle Scholar
  30. 30.
    J. F. Hare and F. L. Crane, 1971, A durohydroquinone oxidation site in the mitochondrial transport chain, Bioenergetics, 2:317.CrossRefGoogle Scholar
  31. 31.
    R. A. Haworth and D. R. Hunter, 1987, Allosteric inhibition of the Ca2+-activated hydrophilic channel of the mitochondrial inner membrane by nucleotides, J. Membr. Biol., 54:231.Google Scholar
  32. 32.
    I. Al-Nasser and M. Crompton, 1986, The reversible Ca2+-induced permeabilization of rat liver mitochondria, Biochem. J., 239:19.PubMedGoogle Scholar
  33. 33.
    I. Al-Nasser and M. Crompton, 1986, The entrapment of the Ca2+ indicator arsenazo III in the matrix space of rat liver mitochondria by permeabilization and resealing, Biochem. J., 239:31.PubMedGoogle Scholar
  34. 34.
    L. H. Hayat and M. Crompton, 1987, The effects of Mg2+ and adenine nucleotides on the sensitivity of the heart mitochondrial Na2+-Ca2+ carrier to extramitochondrial Ca2+, Biochem. J., 244:533.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Douglas R. Pfeiffer
    • 1
  • Kimberly M. Broekemeier
    • 1
  • Urule Igbavboa
    • 1
  • Martin Reers
    • 1
  • William W. RileyJr.
    • 1
  1. 1.The Hormel InstituteUniversity of MinnesotaAustinUSA

Personalised recommendations