Skip to main content

Abnormal Ca2+ Transport Characteristics of Hepatoma Mitochondria and Endoplasmic Reticulum

  • Chapter
Cellular Ca2+ Regulation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 232))

Abstract

The oncogenic transformation of cells from a normal to malignant phenotype is associated with a variety of experimentally discernible changes in the pattern of metabolism. Many of these alterations involve processes modulated by the intracellular level and distribution of calcium. In addition to increased growth rates, Ca2+ may play a specific role in the increased rates of aerobic glycolysis (Cittadini et al., 1981), elevated rates of cholesterol synthesis (Beg et al., 1985), and alterations in cytoskeletal organization and function (Ben-Ze’ev, 1985). Given these and other observations of alterations of cellular processes associated with malignancy, the general hypothesis has surfaced that tumor cell calcium metabolism is abnormal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arslan, P., DiVirgilio, F., Beltrame, M., Tsien, R. and Pozzan, T., 1985, Cytosolic Ca2+ homeostasis in Erhlich and Yoshida carcinomas, J. Biol. Chem., 260: 2719–2727.

    PubMed  CAS  Google Scholar 

  • Beg, Z.H., Stonik, J.A. and Brewer, H.B., Jr., 1985, Phosphorylation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase and modulation of its enzymic activity by calcium-activated and phospholipid-dependent protein kinase, J. Biol. Chem., 260: 1682–1687.

    PubMed  CAS  Google Scholar 

  • Ben-Ze’ev, A., 1985, The cytoskeleton in cancer cells, Biochem. Biophys. Acta, 780: 197–212.

    CAS  Google Scholar 

  • Bernardes, C.F., da Silva, L.P. and Vercesi, A.E., 1986, t-Butylhydroperoxide-induced Ca2+ efflux from liver mitochondria in the presence of physiological concentrations of Mg2+ and ATP, Biochem, Biophys.Acta, 850: 41–48.

    Article  CAS  Google Scholar 

  • Berridge, M.J. and Irvine, R.F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature, 312: 315–321.

    Article  PubMed  CAS  Google Scholar 

  • Broekemeier, K.M., Schmid, P.C., Schmid, H.H.O., and Pfeiffer, D.R., 1985, Effects of phospholipase inhibitors on ruthenium red-induced Ca2+ release from mitochondria, J. Biol. Chem., 260:105–113.

    PubMed  CAS  Google Scholar 

  • Cittadini, A., Bossi, D., Dani, A.M., Calviello, G., Wolf, F. and Terranova, T., 1981, Lack of effect of the Ca2+ ionophore A23187 on tumor cells, Biochem, Biophys, Acta, 645: 177–182.

    Article  CAS  Google Scholar 

  • Cittadini, A., Dani, A.M., Wolf, F., Bossi, D. and Calviello, G., 1982, Calcium permeability of Ehrlich ascites tumor cell plasma membrane in vivo, Biochem. Biophys. Acta, 686: 27–35.

    Article  PubMed  CAS  Google Scholar 

  • Farber, J.L., 1982, Biology of disease: membrane injury and calcium homeostasis in the pathogenesis of coagulative necrosis, Lab Invest., 47: 114–123.

    PubMed  CAS  Google Scholar 

  • Fiskum, G., 1985, Intracellular levels and distribution of Ca2+ in digitonin-permeabilized cells, Cell Calcium, 6: 25–37.

    Article  PubMed  CAS  Google Scholar 

  • Fiskum, G. and Cockrell, R.S., 1985, Uncoupler-stimulated release of Ca2+ from Ehrlich ascites tumor cell mitochondria, Arch. Biochem. Biophys., 240: 723–733.

    Article  PubMed  CAS  Google Scholar 

  • Fiskum, G. and Lehninger, A.L., 1979 Regulated release of Ca2+ release from mitochondria by Ca2+ /2H+ antiport, J. Biol. Chem., 254: 6236–6239.

    Google Scholar 

  • Fiskum, G. and Pease, A., 1986, Hydroperoxide-stimulated release of calcium from rat liver and AS-30D hepatoma mitochondria, Canc. Res., 46: 3459–3463.

    CAS  Google Scholar 

  • Fleschner, C.R., Martin, A.P., Vorbeck, M.L, Darnold, J.R. and Long, J.W., Jr., 1983, Ca2+ release from energetically campled tumor mitochondria, Biochem, Biophys. Res. Commun., 115: 430–436.

    Article  CAS  Google Scholar 

  • Hansford, R.G., 1985, Relation between mitochondrial calcium transport and control of energy metabolism, Rev. Physiol. Biochem. Pharmacol., 102: 1–72.

    Article  PubMed  CAS  Google Scholar 

  • Hickie, R.A. and Kalant, H., 1967, Calcium and magnesium content of rat liver and Morris hepatoma 5123tc, Canc. Res., 27: 1053–1057.

    CAS  Google Scholar 

  • Joseph, S.K., Williams, R.J., Corkey, B.E., Matschinsky, F.M. and Williamson, J.R., 1984, The effect of inositol trisphosphate on Ca fluxes in insulin secreting tumor cells, J. Biol. Chem., 259: 12952–12955.

    PubMed  CAS  Google Scholar 

  • Kennedy, K.A., Teicher, B.A., Rockwell, S. and Sartorelli, A.C., 1980, The hypoxic tumor cell: a target for selective cancer chemotherapy, Biochem. Pharm., 29: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Lau, B.W.C., Weber, L, Maggio, M. and Chan, S.H.P., 1984, Elevated content of cholesterol affects adenine nucleotide transport in tumor mitochondria, Fed. Proc, 43: 1876.

    Google Scholar 

  • Lehninger, A.L., Vercesi, A. and Bababunmi, E.A., 1978, Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides, Proc. Natl. Acad. Sci. USA, 75: 1690–1694.

    Article  PubMed  CAS  Google Scholar 

  • Lotscher, H.R., Winterhalter, K.H., Carafoli, E. and Richter, C., 1979, Hydroperoxides can moderate the redox state of pyridine nucleotides and the calcium balance in rat liver mitochondria, Proc. Natl. Acad. Sci. USA, 76: 4340–4344.

    Article  PubMed  CAS  Google Scholar 

  • Macara, I.G., 1985, Oncogenes, ions, and phospholipids, Am. J. Physiol., 248: C3–C11.

    PubMed  CAS  Google Scholar 

  • Means, A.R., Tash, J.S. and Chafouleas, J.G., 1982, Physiological implications of the presence, distribution and regulation of calmodulin in eukaryotic cells, Physiol. Rev., 62: 1–39.

    PubMed  CAS  Google Scholar 

  • Moulder, J.E. and S.J. Rockwell, 1984, Hypoxic fractions of solid tumors: experimental techniques, methods of analysis, and a survey of existing data, Int. J. Radiat. Oncol. Biol. Phys., 10: 695–772.

    Article  PubMed  CAS  Google Scholar 

  • Nichitta, C.V. and Williamson, J.R., 1984, Spermine: a regulator of mitochondrial calcium cycling, J. Biol. Chem., 259: 12978–12983.

    Google Scholar 

  • Nicholls, D.G. and Brand, M.D., 1980, The nature of the calcium ion efflux induced in rat liver mitochondria by the oxidation of endogenous nicotinamide nucleotides, Biochem. J., 188: 113–118.

    PubMed  CAS  Google Scholar 

  • Ohnishi, T., Suzuki, Y. and Ozawa, K., 1982, A comparative study of plasma membrane Mg2+ ATPase activities in normal, regenerating and malignant cells, Biochim. Biophys. Acta, 684: 67–74.

    Article  PubMed  CAS  Google Scholar 

  • Parlo, R.A. and Coleman, P.S., 1984, Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria: the tuncated Krebs cycle and other metabolic ramifications of mitochondrial membrane cholesterol, J. Biol. Chem., 259: 9997–10003.

    PubMed  CAS  Google Scholar 

  • Sauer, L.A., Dauchy, R.T., Nagel, W.O. and Morris, H.P., 1980, Mitochondrial NAD(P)+-dependent malic enzyme activity and malate-dependent pyruvate formation are progression-linked in Morris hepatomas, J. Biol. Chem., 255: 3844–3848.

    PubMed  CAS  Google Scholar 

  • Smith, D.F., Walborg, E.F. Jr., Chang, J.P, 1970, Establishment of a transplantable ascites variant of a rat hepatoma induced by 3′-methyl-4-dimethylaminoazobenzene, Canc. Res., 30: 2306–2309.

    CAS  Google Scholar 

  • Swierenga, S.H.H., Whitfield, J.F. and Karasaki, S., 1978, Loss of proliferative calcium dependence: simple in vitro indicator of tumorigenicity, Cell Biology, 75: 6069–6072.

    CAS  Google Scholar 

  • Villalobo, A. and Lehninger, A.L., 1980, Inhibition of oxidative phosphorylation in ascites tumor mitochondria and cells by intramitochondrial Ca2+, J. Biol. Chem., 255: 2457–2464.

    PubMed  CAS  Google Scholar 

  • Woldegiorgis, G. and Shrago, E., 1985, Adenine nucleotide translocase activity and sensitivity to inhibitors, J. Biol. Chem., 260: 7585–7590.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Murphy, A.N., Fiskum, G. (1988). Abnormal Ca2+ Transport Characteristics of Hepatoma Mitochondria and Endoplasmic Reticulum. In: Pfeiffer, D.R., McMillin, J.B., Little, S. (eds) Cellular Ca2+ Regulation. Advances in Experimental Medicine and Biology, vol 232. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0007-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0007-7_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0009-1

  • Online ISBN: 978-1-4757-0007-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics