Skip to main content

Sodium-Calcium Exchange in Platelet Plasma Membrane Vesicles

  • Chapter
Cellular Ca2+ Regulation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 232))

  • 45 Accesses

Abstract

Unstimulated platelets maintain submicromolar concentration of cytosolic Ca2+ (~100 μM) and a steep plasma membrane Ca2+ gradient. Since passive inward diffusion of Ca2+ will cause platelet activation, mechanisms in addition to Ca2+ sequestration by endoplasmic reticulum must exist to remove Ca2+ from cytosol. In other tissues low cytosolic Ca2+ is achieved, in part, by plasma membrane ATP-dependent Ca2+ efflux1,2 and Na+-Ca2+ exchange3,4. Although platelets possess Ca2+-Mg2+-ATPase activity, the available evidence suggests that this enzyme is present only in the inner membranes5,6. Whether Na+-Ca2+ exchange activity occurs in platelets is not known. We investigated the involvement of Na+-Ca2+ exchange in this process. This study establishes that platelet membranes enriched in plasma membrane markers exhibited Na+-Ca2+ exchange activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. J. Schatzmann, The red cell calcium pump, Ann. Rev. Physiol. 45:303 (1983).

    Article  CAS  Google Scholar 

  2. P. Caroni, and E. Carafoli, An ATP-dependent Ca2+-pumping system in dog heart sarcolemma, Nature 283:765 (1980).

    Article  PubMed  CAS  Google Scholar 

  3. H. Reuter, and Sietz, The dependence of calcium efflux from cardiac muscle on temperature and external ion composition, J. Physiol. 195:451 (1968).

    PubMed  CAS  Google Scholar 

  4. J. P. Reeves, and J. L. Sutko, Sodium-calcium ion exchange in cardiac membrane vesicles, Proc. Natl. Acad. Sci. USA 76:590 (1979).

    Article  PubMed  CAS  Google Scholar 

  5. L. S. Robblee, D. Shepro, and F. A. Belamarich, Calcium uptake and associated adenosine triphosphatase activity of isolated platelet membranes, J. Gen. Physiol. 61:462 (1973).

    Article  PubMed  CAS  Google Scholar 

  6. S. Menashi, K. S. Authi, F. Carey, and N. Crawford, Characterization of Ca2+-sequestering process associated with human platelet membranes isolated by free-flow electrophoresis, Biochem. J. 222:413 (1984)

    PubMed  CAS  Google Scholar 

  7. G. Mauco, J. Fauvel, H. Chap, and L. Douste-Blazy, Studies on enzymes related to diacylglycerol production in activated platelets II.Subcellular distribution, enzymatic properties and positional specificity of diacylglycerol-and monoacylglycerol-lipases, Biochim. Biophys. Acta 796: 169 (1984).

    Article  PubMed  CAS  Google Scholar 

  8. M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72:248 (1976).

    Article  PubMed  CAS  Google Scholar 

  9. J. Fauvel, H. Chap, U. Rogues, S. Levy-Toledano, and L. Douste-Blazy, Biochemical characterization of plasma membranes and intracellular membranes isolated from human platelets using Percoll gradients, Biochim. Biophys. Acta 856:155 (1986).

    Article  PubMed  CAS  Google Scholar 

  10. P. Caroni, and E. Carafoli, The regulation of sodium-calcium exchanger of heart sarcolemma, Eur. J. Biochem. 132:451 (1983).

    Article  PubMed  CAS  Google Scholar 

  11. J. P. Reeves, C. A. Bailey, and C. C. Hale, Redox modifications of sodium-calcium exchange activity in cardiac sarcolemmal vesicles, J. Biol. Chem. 261:4948 (1986).

    PubMed  CAS  Google Scholar 

  12. J. P. Reeves, and J. L. Sutko, Competitive interactions of sodium and calcium with the sodium-calcium exchange system of cardiac sarcolemmal vesicles, J. Biol. Chem. 258:3178 (1983).

    PubMed  CAS  Google Scholar 

  13. K. D. Philipson, Sodium-calcium exchange in plasma membrane vesicles, Ann. Rev. Physiol. 47:561 (1985).

    Article  CAS  Google Scholar 

  14. J. R. Gilbert, and G. Meissner, Sodium-calcium exchange in skeletal muscle sarcolemmal vesicles, J. Memb. Biol. 69:77 (1982).

    Article  CAS  Google Scholar 

  15. G. D. Schellenberg, and P. D. Swanson, Sodium-dependent and calcium-dependent calcium transport by rat brain microsomes, Biochim, Biophys. Acta 648:13 (1981).

    Article  CAS  Google Scholar 

  16. B. J. R. Pitts, Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles-coupling to the sodium pump, J. Biol. Chem. 254:6232 (1979).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Rengasamy, A., Feinberg, H. (1988). Sodium-Calcium Exchange in Platelet Plasma Membrane Vesicles. In: Pfeiffer, D.R., McMillin, J.B., Little, S. (eds) Cellular Ca2+ Regulation. Advances in Experimental Medicine and Biology, vol 232. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0007-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0007-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0009-1

  • Online ISBN: 978-1-4757-0007-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics