Sodium-Calcium Exchange in Platelet Plasma Membrane Vesicles

  • Appavoo Rengasamy
  • Harold Feinberg
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 232)


Unstimulated platelets maintain submicromolar concentration of cytosolic Ca2+ (~100 μM) and a steep plasma membrane Ca2+ gradient. Since passive inward diffusion of Ca2+ will cause platelet activation, mechanisms in addition to Ca2+ sequestration by endoplasmic reticulum must exist to remove Ca2+ from cytosol. In other tissues low cytosolic Ca2+ is achieved, in part, by plasma membrane ATP-dependent Ca2+ efflux1,2 and Na+-Ca2+ exchange3,4. Although platelets possess Ca2+-Mg2+-ATPase activity, the available evidence suggests that this enzyme is present only in the inner membranes5,6. Whether Na+-Ca2+ exchange activity occurs in platelets is not known. We investigated the involvement of Na+-Ca2+ exchange in this process. This study establishes that platelet membranes enriched in plasma membrane markers exhibited Na+-Ca2+ exchange activity.


Calcium Uptake Uptake Medium Platelet Membrane Adenosine Triphosphatase Submicromolar Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. J. Schatzmann, The red cell calcium pump, Ann. Rev. Physiol. 45:303 (1983).CrossRefGoogle Scholar
  2. 2.
    P. Caroni, and E. Carafoli, An ATP-dependent Ca2+-pumping system in dog heart sarcolemma, Nature 283:765 (1980).PubMedCrossRefGoogle Scholar
  3. 3.
    H. Reuter, and Sietz, The dependence of calcium efflux from cardiac muscle on temperature and external ion composition, J. Physiol. 195:451 (1968).PubMedGoogle Scholar
  4. 4.
    J. P. Reeves, and J. L. Sutko, Sodium-calcium ion exchange in cardiac membrane vesicles, Proc. Natl. Acad. Sci. USA 76:590 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    L. S. Robblee, D. Shepro, and F. A. Belamarich, Calcium uptake and associated adenosine triphosphatase activity of isolated platelet membranes, J. Gen. Physiol. 61:462 (1973).PubMedCrossRefGoogle Scholar
  6. 6.
    S. Menashi, K. S. Authi, F. Carey, and N. Crawford, Characterization of Ca2+-sequestering process associated with human platelet membranes isolated by free-flow electrophoresis, Biochem. J. 222:413 (1984)PubMedGoogle Scholar
  7. 7.
    G. Mauco, J. Fauvel, H. Chap, and L. Douste-Blazy, Studies on enzymes related to diacylglycerol production in activated platelets II.Subcellular distribution, enzymatic properties and positional specificity of diacylglycerol-and monoacylglycerol-lipases, Biochim. Biophys. Acta 796: 169 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72:248 (1976).PubMedCrossRefGoogle Scholar
  9. 9.
    J. Fauvel, H. Chap, U. Rogues, S. Levy-Toledano, and L. Douste-Blazy, Biochemical characterization of plasma membranes and intracellular membranes isolated from human platelets using Percoll gradients, Biochim. Biophys. Acta 856:155 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    P. Caroni, and E. Carafoli, The regulation of sodium-calcium exchanger of heart sarcolemma, Eur. J. Biochem. 132:451 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    J. P. Reeves, C. A. Bailey, and C. C. Hale, Redox modifications of sodium-calcium exchange activity in cardiac sarcolemmal vesicles, J. Biol. Chem. 261:4948 (1986).PubMedGoogle Scholar
  12. 12.
    J. P. Reeves, and J. L. Sutko, Competitive interactions of sodium and calcium with the sodium-calcium exchange system of cardiac sarcolemmal vesicles, J. Biol. Chem. 258:3178 (1983).PubMedGoogle Scholar
  13. 13.
    K. D. Philipson, Sodium-calcium exchange in plasma membrane vesicles, Ann. Rev. Physiol. 47:561 (1985).CrossRefGoogle Scholar
  14. 14.
    J. R. Gilbert, and G. Meissner, Sodium-calcium exchange in skeletal muscle sarcolemmal vesicles, J. Memb. Biol. 69:77 (1982).CrossRefGoogle Scholar
  15. 15.
    G. D. Schellenberg, and P. D. Swanson, Sodium-dependent and calcium-dependent calcium transport by rat brain microsomes, Biochim, Biophys. Acta 648:13 (1981).CrossRefGoogle Scholar
  16. 16.
    B. J. R. Pitts, Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles-coupling to the sodium pump, J. Biol. Chem. 254:6232 (1979).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Appavoo Rengasamy
    • 1
  • Harold Feinberg
    • 1
  1. 1.Department of PharmacologyUniversity of Illinois College of Medicine at ChicagoChicagoUSA

Personalised recommendations