Skip to main content

Calorimetric Measurements on Metal Sulfates and Their Hydrates: Electrode Potentials and Thermodynamic Data for Aqueous Ions of Transition Elements

  • Conference paper
Analytical Calorimetry
  • 246 Accesses

Abstract

Knowledge of reversible electrode potentials is important for many aspects of analytical electrochemistry, and also as a source of thermo-dynamic data that are finding increasing applications in analytical chemistry. Unfortunately, there are substantial experimental difficulties associated with determination of reversible electrode potentials for metals that are very reactive and for ill-behaving metals that often yield “irreversible” electrodes. Many years ago, Lewis developed and applied indirect electrochemical methods for determination of the potentials for such active metals as sodium in aqueous systems. Subsequently, Latimer and others have applied thermodynamic data to calculation of aqueous potentials for aluminum, fluorine, etc.

Parts of this work are also reported in the following: J. W. Larson, Ph.D. Thesis, Carnegie-Mellon University, 1968; J. W. Larson, P. Cerutti, H. K. Garber, and L. G. Hepler, J. Phys. Chem., in press.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. F. O’Hara, C. H. Wu, and L. G. Hepler, J. Chem. Educ., 38, 512 (1964).

    Article  Google Scholar 

  2. E. Lange in “The Structure of Electrolyte Solutions,” W. J. Hamer, Ed., John Wiley and Sons, Inc., New York, N. Y., 1959.

    Google Scholar 

  3. E. Lange and W. Miederer, Z. Electrochem., 60, 34 (1956).

    CAS  Google Scholar 

  4. L. H. Adami and E. G. King, U. S. Bureau of Mines Report of Investigations NO. 6617, Director, Mines Bureau, Pittsburgh, Pa., (1965).

    Google Scholar 

  5. D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey, and R. H. Schumm, Technical Note 270-3, U. S. Natl. Bur. Stds., Washington, D. C., (1968).

    Google Scholar 

  6. A. D. Mah, L. B. Pankratz, W. W. Weiler, and E. G. King, U. S. Bureau of Mines Report of Investigation No. 7026, Director, Mines Bureau, Pittsburgh, Pa., (1967).

    Google Scholar 

  7. A. Seidell, Solubilities of Inorganic and Metal Organic Compounds, 3rd ed., D. Van Nostrand Co., Inc., New York, (1940).

    Google Scholar 

  8. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd ed., Revised, Butterworths, London, (1965).

    Google Scholar 

  9. J. W. Stout, personal communication, (1967).

    Google Scholar 

  10. K. K. Kelley and E. G. King, U. S. Bureau of Mines Bulletin 592, U. S. Government Printing Office, Washington, D. C., (1961).

    Google Scholar 

  11. In spite of considerable discussion in recent years, general agreement is still lacking on “sign conventions” for potentials. Much of the confusion arises because “sign” can be either electrical or algebraic, with the two kinds of signs not necessarily interchangeable. All potentials cited here are oxidation half reaction potentials with algebraic signs. This question has been discussed in more detail elsewhere: R. N. Goldberg and L. G. Hepler, Chem. Rev., 68, 229 (1968).

    Article  CAS  Google Scholar 

  12. A. J. deBethune, T. S. Licht, and N. Swendeman, J. Electrochem. Soc., 106, 616 (1959).

    Article  CAS  Google Scholar 

  13. Z Z. Hugus, Jr., J. Am. Chem. Soc., 73, 5459 (1951).

    Article  CAS  Google Scholar 

  14. A. R. Tourky and M. M. Khairy, J. Chem. Soc., 26 26 (1952).

    Google Scholar 

  15. W. F. Giauque, R. F. Barieau, and J. E. Kunzler, J. Am. Chem. Soc., 72, 5685 (1950).

    Article  CAS  Google Scholar 

  16. A. K. Covington, J. V. Dodson, and W. F. K. Wynne-Jones, Trans. Faraday Soc., 61, 2050 (1964).

    Article  Google Scholar 

  17. W. M. Latimer, Oxidation Potentials, 2nd ed., Prentice-Hall, Inc., New York, N. Y., (1952).

    Google Scholar 

  18. D. N. Lyon and W. F. Giauque, J. Am. Chem. Soc., 71, 1647 (1949).

    Article  CAS  Google Scholar 

  19. L. H. Adami and K. K. Kelley, U. S. Bureau of Mines Report of Investigation No. 6260, Director, Mines Bureau, Pittsburgh, Pa., (1963).

    Google Scholar 

  20. “Selected Values of Chemical Thermodynamic Properties,” National Bureau of Standards Circular 500, U. S. Government Printina Office, Washington, D. C., (1952).

    Google Scholar 

  21. M. F. Koehler and J. P. Coughlin, J. Phys. Chem., 63, 605 (1959).

    Article  CAS  Google Scholar 

  22. J. C. M. Li and N. W. Gregory, J. Am. Chem. Soc., 74, 4670 (1952).

    Article  CAS  Google Scholar 

  23. W. A. Patrick and W. E. Thompson, J. Am. Chem. Soc., 75, 1184 (1953).

    Article  CAS  Google Scholar 

  24. T. Hurlen, Acta Chem. Scand., 14, 1533 (1960).

    Article  CAS  Google Scholar 

  25. W. M. Latimer, K. S. Pitzer, and W. V. Smith, J. Am. Chem. Soc., 60, 1829 (1938).

    Article  CAS  Google Scholar 

  26. R. E. Connick and W. H. McVey, J. Am. Chem. Soc., 73, 1798 (1951).

    Article  CAS  Google Scholar 

  27. L. B. Magnusson and J. R. Huizenga, J. Am. Chem. Soc., 75, 2242 (1953).

    Article  CAS  Google Scholar 

  28. D. K. Bewley, Trans. Faraday Soc., 56, 1629 (1960).

    Article  CAS  Google Scholar 

  29. M. M. Birky and L. G. Hepler, unpublished data.

    Google Scholar 

  30. R. N. Goldberg, R. G. Riddell, M. R. Wingard, H. P. Hopkins, C. A. Wulff, and L. G. Hepler, J. Phys. Chem., 70, 706 (1966).

    Article  CAS  Google Scholar 

  31. R. H. Busey and W. F. Giauque, J. Am. Chem. Soc., 75, 1791 (1953).

    Article  CAS  Google Scholar 

  32. K. Sano, F. Ishikawa Anniversary Vol., Science Reports Tohuko Univ., 37, No. 1, 1 (1953).

    Google Scholar 

  33. S. N. Flengas and T. R. Ingraham, Can. J. Chem., 35, 1254 (1957).

    Article  CAS  Google Scholar 

  34. C. N. Muldrow, J. S. Sweet, and L. G. Hepler, unpublished data.

    Google Scholar 

  35. J. W. Stout, R. C. Archibald, G. E. Brodale, and W. F. Giauque, J. Chem. Phys., 44, 405 (1966).

    Article  CAS  Google Scholar 

  36. D. S. Carr and C. F. Bonilla, J. Electrochem. Soc., 99, 425 (1952).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Plenum Press

About this paper

Cite this paper

Larson, J.W., Hepler, L.G. (1968). Calorimetric Measurements on Metal Sulfates and Their Hydrates: Electrode Potentials and Thermodynamic Data for Aqueous Ions of Transition Elements. In: Porter, R.S., Johnson, J.F. (eds) Analytical Calorimetry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0001-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0001-5_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0003-9

  • Online ISBN: 978-1-4757-0001-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics