Skip to main content

Hydrophobic Adsorption Chromatography of Proteins

  • Chapter
Methods of Protein Separation

Part of the book series: Biological Separations ((BIOSEP))

Abstract

Until relatively recently, only one general protein property, i.e., electrical charge in the case of ion exchange adsorbents, was wittingly employed as a parameter for nonspecific adsorption chromatography of proteins. One of the reasons for the delay of investigations of possible hydrophobic effects probably was the assumption that hydrophobic groups of proteins generally are situated in the interior of the native protein molecule and thus are inaccessible. The occurrence of external hydrophobic groups was looked upon as relatively rare. However, recent observations (Klotz, 1970) indicate that the hydrophobic amino acid side chains, including the largest ones such as those of phenylalanine and tryptophan, occur much more frequently on the surface of native protein molecules than had been assumed. These findings are in accord with the “extremely wide range of processes in which hydrophobic bonding plays a critical role” (Dunn andHansch, 1974) and with the observation that in the presence of high salt concentrations many proteins are bound by adsorbents carrying hydrophobic groups (Hofstee, 1973a; Porath et al., 1973; Hjertén, 1973).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

IV. References

  • Axén, R., Porath, J., and Ernback, S. (1967). Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature (London) 214:1302.

    Article  Google Scholar 

  • Babb, D., and Hofstee, B. H. J. (1971). Gel isoelectric focusing in following the successive carbamylations of amino groups in chymotrypsinogen A. Anal. Biochem. 40:209.

    Article  Google Scholar 

  • Cuatrecasas, P. (1970). Protein purification by affinity chromatography. J. Biol. Chem. 245:3059.

    PubMed  CAS  Google Scholar 

  • Cuatrecasas, P., and Hollenberg, M. D. (1975). Binding of insulin and other hormones to non-receptor materials: Saturability, specificity and apparent “negative cooperativity”. Biochem. Biophys. Res. Commun. 62:31.

    Article  PubMed  CAS  Google Scholar 

  • Cuatrecasas, P., and Parikh, I. (1972). Adsorbents for affinity chromatography: Use of n-hydroxysuccinimide esters of agarose. Biochemistry 11:2291.

    Article  PubMed  CAS  Google Scholar 

  • Dandliker, W. B., and de Saussure, V. A. (1971). Stabilization of macromolecules by hydrophobic bonding: Role of water structure and of chaotropic ions. In The Chemistry of Biosurfaces, Vol. 1 (M. L. Hair, ed.), Dekker, New York, pp. 1–43.

    Google Scholar 

  • Doellgast, G. J., Memoli, V. A., Plaut, A. G., and Fishman, W. H. (1974). Salt-mediated hydrophobic chromatography of serum proteins. Abst. Fed. Proc. 33(II):1561.

    Google Scholar 

  • Dunn, W. J., III, and Hansch, C. (1974). Chemicobiological interactions and the use of partition coefficients in their correlation. Chem. Biol. Interact. 9:75.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, H. F. (1971). Role of electrostatic interactions in allosteric proteins. J. Theor. Biol. 31:69.

    Article  PubMed  CAS  Google Scholar 

  • Ertel, Z., Zaidenzaig, Y., and Shaltiel, S. (1972). Hydrocarbon-coated Sepharoses: Use in purification of glycogen phosphorylase. Biochem. Biophys. Res. Commun. 49:383.

    Article  Google Scholar 

  • Helmer, F., Kiehs, K., and Hansch, C. (1968). The linear free-energy relationship between partition coefficients and the binding and conformational perturbation of macromolecules by small organic compounds. Biochemistry 7:2858.

    Article  PubMed  CAS  Google Scholar 

  • Himmelhoch, S. R. (1971). Chromatography of proteins on ion-exchange adsorbents. In Methods in Enzymology, Vol. 22 (W. B. Jacoby, ed.), Academic Press, New York, pp. 273–286.

    Google Scholar 

  • Hjertén, S. (1964). The preparation of agarose spheres for chromatography of molecules and particles. Biochim. Biophys. Acta 79:393.

    Article  PubMed  Google Scholar 

  • Hjertén, S. (1973). Some general aspects of hydrophobic interaction chromatography. J. Chromatogr. 87:325.

    Article  Google Scholar 

  • Hjertén, S., Rosengren, J., and Påhlman, S. (1974). Hydrophobic interaction chromatography: The synthesis and use of some alkyl and aryl derivatives of agarose. J. Chromatogr. 101:281.

    Article  Google Scholar 

  • Hofstee, B. H. J. (1958). Micelle formation in substrates of esterases. Arch. Biochem. Biophys. 78:188.

    Article  PubMed  CAS  Google Scholar 

  • Hofstee, B. H. J. (1973a). Hydrophobic affinity chromatography of proteins. Anal. Biochem. 52:430.

    Article  PubMed  CAS  Google Scholar 

  • Hofstee, B. H. J. (1973b). Protein binding by agarose carrying hydrophobic groups in conjunction with charges. Biochem. Biophys. Res. Commun. 50:751.

    Article  PubMed  CAS  Google Scholar 

  • Hofstee, B. H. J. (1973c). Immobilization of enzymes through non-covalent binding to substituted agaroses. Biochem. Biophys, Res. Commun. 53:1137.

    Article  CAS  Google Scholar 

  • Hofstee, B. H. J. (1974a). Hydrophobic aspects of protein binding by substituted agaroses. Polymer Preprints 15(1):311.

    CAS  Google Scholar 

  • Hofstee, B. H. J. (1974b). Non-specific binding of proteins by substituted agaroses. In Immobilized Biochemicals and Affinity Chromatography (R. B. Dunlap, ed.), Plenum, New York. pp. 43–59.

    Chapter  Google Scholar 

  • Hofstee, B. H. J. (1975a). Accessible hydrophobic groups of native proteins. Biochem. Biophys. Res. Commun. 63:618.

    Article  PubMed  CAS  Google Scholar 

  • Hofstee, B. H. J. (1975b). Fractionation of protein mixtures through differential adsorption on a gradient of substituted agaroses of increasing hydrophobicity. Prep. Biochem. 5:7.

    Article  PubMed  CAS  Google Scholar 

  • Hofstee, B. H. J. (1976). Hydrophobic effects in adsorptive protein immobilization. In Polymer Grafts in Biochemistry (H. F. Hixson, ed.), Dekker, New York (in press).

    Google Scholar 

  • Jakubowski, H., and Pawelkiewicz, J. (1973). Chromatography of plant aminoacyl-tRNA synthetases on ω-aminoalkyl sepharose columns. FEBS Letters 34(2):150.

    Article  PubMed  CAS  Google Scholar 

  • Jencks, W. P. (1969). Catalysis in Chemistry and Enzymology, McGraw-Hill, New York.

    Google Scholar 

  • Jennissen, H. P., and Heilmeyer, L. M. G., Jr. (1975). General aspects of hydrophobic chromatography: Adsorption and elution characteristics of some skeletal muscle enzymes. Biochemistry 14:754.

    Article  PubMed  CAS  Google Scholar 

  • Jost, R., Miron, T., and Wilcheck, M. (1974). The mode of adsorption of proteins to aliphatic and aromatic amines coupled to cyanogen bromide-activated agarose. Biochim. Biophys. Acta 362:75.

    Article  PubMed  CAS  Google Scholar 

  • Kauzman, W. (1959). Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14:1.

    Article  Google Scholar 

  • Klotz, I. M. (1970). Comparison of molecular structures of proteins: Helix content; distribution of apolar residues. Arch. Biochem. Biophys. 138:704.

    Article  PubMed  CAS  Google Scholar 

  • Kraut, J., Wright, H. T., Kellerman, M., and Freer, S. T. (1967). π, δ, and γ-chymotrypsin: Three-dimensional electron-density and difference maps at 5 A resolution, and comparison with chymotrypsinogen. Proc. Natl. Acad. Sci. USA 58:304.

    Article  PubMed  CAS  Google Scholar 

  • Lewin, S. (1974). Displacement of Water and Its Control of Biochemical Reactions, Academic Press, London.

    Google Scholar 

  • Lumry, R., and Biltonen, R. (1969). Thermodynamic and kinetic aspects of protein conformations in relation to physiological function. In Structure and Stability of Biological Macromolecules, Vol. 2 (S. N. Timasheff and G. D. Fasman, eds.), Dekker, New York, pp. 65–212.

    Google Scholar 

  • McClure, W. O., and Edelman, G. M. (1966). Fluorescent probes for conformational states of proteins. I. Mechanism of fluorescence of 2-p-toluidinylnaphthalene-6-sulfonate, hydrophobic probe. Biochemistry 5:1908.

    Article  PubMed  CAS  Google Scholar 

  • Némethy, G., and Scheraga, H. A. (1962). The structure of water and hydrophobic bonding in proteins. III. The thermodynamic properties of hydrophobic bonds in proteins J. Phys. Chem. 66:1773.

    Article  Google Scholar 

  • Nishikawa, A. H., Bailon, P., and Ramel, A. H. (1974). Quantitative parameters in affinity chromatography. In Immobilized Biochemicals and Affinity Chromatography (R. B. Dunlap, ed.), Plenum, New York, pp. 33–42.

    Chapter  Google Scholar 

  • O’Carra, P., Barry, S., and Griffin, T. (1973). Spacer-arms in affinity chromatography: The need for a more rigorous approach. Biochem. Soc. Trans. 1:289.

    Google Scholar 

  • Peterson, E. A. (1970). Adsorption and desorption. In Laboratory Techniques in Biochemistry and Molecular Biology, Vol. II, Part II (T. S. Work and E. Work, eds.), North-Holland, Amsterdam, pp. 255–270.

    Google Scholar 

  • Peterson, E. A., and Sober, H. A. (1966). Chromatography of the plasma proteins. In The Plasma Proteins, Vol. 1 (F. W. Putnam, ed.), Academic Press, New York, pp. 105–141.

    Google Scholar 

  • Porath, J. (1968). Molecular sieving and adsorption. Nature (London) 218:834.

    Article  CAS  Google Scholar 

  • Porath, J. Axén, R., and Ernback, S. (1967). Chemical coupling of proteins to agarose. Nature (London) 215:1491.

    Article  CAS  Google Scholar 

  • Porath, J., Sundberg, L., Fornstedt, N., and Olsson, I. (1973). Salting-out in amphiphilic gels as a new approach to hydrophobic adsorption. Nature (London) 245:465.

    Article  CAS  Google Scholar 

  • Reynolds, J. A., Herbert, S., Polet, H., and Steinhardt, J. (1967). The binding of divers detergent anions to bovine serum albumin. Biochemistry 6:937.

    Article  PubMed  CAS  Google Scholar 

  • Rimerman, R. A., and Hatfield, G. W. (1973). Phosphate-induced protein chromatography, Science 182:1268.

    Article  PubMed  CAS  Google Scholar 

  • Sachs, D. H., and Painter, E. (1972). Improved flow rates with porous Sephadex gels. Science 175:781.

    Article  PubMed  CAS  Google Scholar 

  • Shaltiel, S. (1974). Hydrophobic chromatography. In Methods in Enzymology, Vol. 34 (W. B. Jakoby and M. Wilcheck, eds.), Academic Press, New York, pp. 126–140.

    Google Scholar 

  • Shaltiel, S., and Ertel, Z. (1973). Hydrophobic chromatography: Use for purification of glycogen synthetase. Proc. Natl. Acad. Sci. USA 70:778.

    Article  PubMed  CAS  Google Scholar 

  • Sober, H. A., and Peterson, E. A. (1960). Chromatographic evaluation of protein mixtures. In Amino Acids, Proteins and Cancer Biochemistry, Academic Press, New York, pp. 61–83.

    Google Scholar 

  • Sober, H. A., Hartley, R. W., Carrol, W. R., and Peterson, E. A. (1965). Fractionation of proteins. In The Proteins, Vol. 3 (H. Neurath, ed.), Academic Press, New York, pp. 1–97.

    Google Scholar 

  • Steitz, T. A., Henderson, R., and Blow, D. M. (1969). Structure of crystalline α-chymotrypsin. III. Crystallographic studies of substrates and inhibitors bound to th e active site of α-chymotrypsin. J. Mol. Biol. 46:337.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson, K. J., and Landman, A. (1971). The isolation of chymotrypsin-like e nzymes by affinity chromatography using Sepharose-4-phenyl-butylamine. Can. J. Biochem. 49:119.

    Article  PubMed  CAS  Google Scholar 

  • Tanford, C. (1961). Physical Chemistry of Macromolecules, Wiley, New York.

    Google Scholar 

  • Tanford, C. (1968). Protein denaturation. Adv. Protein Chem. 23:121.

    Article  PubMed  CAS  Google Scholar 

  • Tanford, C. (1973). The Hydrophobic Effect: Formation of Micelles and Bio logical Membranes, Wiley, New York.

    Google Scholar 

  • Vanderkooi, G., and Green, D. E. (1970). Biological membrane structure. I. The protein crystal model for membranes. Proc. Natl. Acad. Sci. USA 66:615.

    Article  PubMed  CAS  Google Scholar 

  • von Hippel, P. H., and Schleich, T. (1969). The effect of neutral salts on the structu ire and conformational stability of macromolecules in solution. In Structure and S tability of Biological Macromolecules, Vol. 2 (S. N. Timasheff and G. D. Fasman eds,) Dekker, New York, pp. 417–574.

    Google Scholar 

  • Yon, R. J. (1972). Chromatography of lipophilic proteins on adsorbents con aining mixed hydrophobic and ionic groups. Biochem. J., 126:765.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hofstee, B.H.J. (1976). Hydrophobic Adsorption Chromatography of Proteins. In: Catsimpoolas, N. (eds) Methods of Protein Separation. Biological Separations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9984-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9984-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9986-5

  • Online ISBN: 978-1-4684-9984-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics