Bifurcation and Stability of Steady Solutions of Evolution Equations in One Dimension

  • Gérard Iooss
  • Daniel D. Joseph
Part of the Undergraduate Texts in Mathematics book series (UTM)


We consider an evolution equation in [R1 of the form
$$ \frac{{dU}}{{dt}} = F\left( {\mu ,u} \right) $$
where F(·,·) has two continuous derivatives with respect to µ and u.


Evolution Equation Singular Point Bifurcation Diagram Equilibrium Solution Implicit Function Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York Inc. 1980

Authors and Affiliations

  • Gérard Iooss
    • 1
  • Daniel D. Joseph
    • 2
  1. 1.Faculté des Sciences, Institut des Mathématiques et Sciences PhysiquesUniversité des NiceParc Valrose, NiceFrance
  2. 2.Department of Aerospace Engineering and MechanicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations