Subharmonic Bifurcation of Forced T-Periodic Solutions

  • Gérard Iooss
  • Daniel D. Joseph
Part of the Undergraduate Texts in Mathematics book series (UTM)


In this chapter, and in Chapter X, we consider the bifurcation of forced T-periodic solutions. In thinking about the origin and structure of such problems it would benefit the reader to reread the explanations given in §1.2 and §1.3. Following our usual procedure we do the theory in Rn, n ≥ 2, and show how the analysis reduces to R1 or R2 using projections associated with the Fredholm alternative. There is a sense in which the problem in Rn withn finite is actually infinite-dimensional. Unlike steady problems which involve only constant vectors, we must work with vector-valued functions which depend periodically on time and hence take on infinitely many distinct values. So, in this chapter the computational simplifications which would result from considering R2 rather than Rn are not great. In Rn we use the same notation we would use for an evolution equation in a Banach space. So our results hold equally in Rn and, say, for evolution problems governed by partial differential equations, like the Navier-Stokes equations or equations governing reaction and diffusion in chemical systems, provided the writing of these partial differential equations as evolution problems in Banach space can be justified.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York Inc. 1980

Authors and Affiliations

  • Gérard Iooss
    • 1
  • Daniel D. Joseph
    • 2
  1. 1.Faculté des Sciences, Institut des Mathématiques et Sciences PhysiquesUniversité des NiceParc Valrose, NiceFrance
  2. 2.Department of Aerospace Engineering and MechanicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations