Skip to main content

Enumeration in geometric lattices

  • Chapter
  • 506 Accesses

Abstract

The papers reprinted in this chapter are concerned with enumeration within a geometric lattice. They are closely related to papers on the Tutte decomposition reprinted in the next chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baclawski, K.: The Möbius algebra as a Grothendieck ring, J. Algebra 57(1979), 167–179.

    Article  MathSciNet  MATH  Google Scholar 

  2. Edelman, P.H.: Zeta polynomials and the Möbius function, Europ. J. Combin. 1(1980), 335–340.

    MathSciNet  MATH  Google Scholar 

  3. Greene, C.: On the Möbius algebra of a partially ordered set, Advances in Math. 10(1973), 177–187.

    Article  MathSciNet  MATH  Google Scholar 

  4. Rota, G.-C. and Smith, D.: Enumeration under group action, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4(1977), 637–646.

    MathSciNet  MATH  Google Scholar 

  5. Solomon, L.: The Burnside algebra of a finite group, J. Combin. Theory 2(1967), 603–615.

    Article  MATH  Google Scholar 

  6. Baclawski, K.: Whitney numbers of geometric lattices, Advances in Math. 16(1975), 125–138.

    Article  MathSciNet  MATH  Google Scholar 

  7. Baclawski, K.: Galois connections and the Leray spectral sequence, Advances in Math. 25(1977), 191–215.

    Article  MathSciNet  MATH  Google Scholar 

  8. Baclawski, K.: Cohen-Macaulay ordered sets, J. Algebra 63(1980), 226–258.

    Article  MathSciNet  MATH  Google Scholar 

  9. Baclawski, K.: Cohen-Macaulay connectivity and geometric lattices, Europ. J. Combin. 3(1982), 293–305.

    MathSciNet  MATH  Google Scholar 

  10. Baclawski, K.: Nonpositive Cohen-Macaulay connectivity, preprint.

    Google Scholar 

  11. Baclawski, K. and Björner, A.: Fixed points in partially ordered sets, Advances in Math. 31(1979), 263–287.

    Article  MATH  Google Scholar 

  12. Baclawski, K. and Björner, A.: Fixed points and complements in finite lattices, J. Combin. Theory Ser. A 30(1981), 335–338.

    Article  MathSciNet  MATH  Google Scholar 

  13. Björner, A.: Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260(1980), 159–183.

    Article  MathSciNet  MATH  Google Scholar 

  14. Björner, A.: Homotopy type of posets and lattice complementation, J. Combin. Theory Ser. A 30(1981), 90–100.

    Article  MathSciNet  MATH  Google Scholar 

  15. Björner, A.: On the homology of geometric lattices, Algebra Universalis 14(1982), 107–128.

    Article  MathSciNet  MATH  Google Scholar 

  16. Björner, A., Garsia, A.M. and Stanley, R.P.: An introduction to Cohen-Macaulay partially ordered sets, Ordered Sets (I. Rival, ed.), pp. 583–615, Reidel, Dordrecht and Boston, 1982.

    Chapter  Google Scholar 

  17. Björner, A. and Walker, J.W.: A homotopy complementation formula for partially ordered sets, Europ. J. Combin. 4(1983), 11–19.

    MATH  Google Scholar 

  18. Brini, A.: Some homological properties of partially ordered sets, Advances in Math. 43(1982), 197–201.

    Article  MathSciNet  MATH  Google Scholar 

  19. Farmer, F.D.: Homology of reflexive relations, Math. Japon. 20(1975), 303–310.

    MathSciNet  Google Scholar 

  20. Farmer, F.D.: Homology of products and joins of reflexive relations, Discrete Math. 11(1975), 23–27.

    Article  MathSciNet  MATH  Google Scholar 

  21. Farmer, F.D.: Characteristic for reflexive relations, Aequationes Math. 15(1977), 195–199.

    Article  MathSciNet  MATH  Google Scholar 

  22. Farmer, F.D.: Cellular homology for posets, Math. Japon. 23(1978/79), 607–613.

    MathSciNet  Google Scholar 

  23. Griffiths, H.B.: The homology groups of some ordered systems, Acta Math. 129(1972), 195–235.

    Article  MathSciNet  MATH  Google Scholar 

  24. Griffiths, H.B.: An exact homology sequence induced by a Galois connection, Proc. London Math. Soc. (3) 32(1976), 101–116.

    Article  MathSciNet  MATH  Google Scholar 

  25. Lakser, H.: The homology of a lattice, Discrete Math. 1(1971), 187–192.

    Article  MathSciNet  MATH  Google Scholar 

  26. Mather, J.: Invariance of the homology of a lattice, Proc. Amer. Math. Soc. 17(1966), 1120–1124.

    Article  MathSciNet  MATH  Google Scholar 

  27. Orlik, P. and Solomon, L.: Combinatorics and topology of complements of hyperplanes, Invent. Math. 56(1980), 167–189.

    Article  MathSciNet  MATH  Google Scholar 

  28. Quillen, D.: Homotopy properties of the poset of non-trivial p-subgroups of a group, Advances in Math. 28(1978), 101–128.

    Article  MathSciNet  MATH  Google Scholar 

  29. Rota, G.-C: On the combinatorics of the Euler characteristic, Studies in Pure Mathematics (Presented to Richard Rado), pp. 221–233, Academic Press, London, 1971.

    Google Scholar 

  30. Stanley, R.P.: Balanced Cohen-Macaulay complexes, Trans. Amer. Math. Soc. 249(1979), 139–157.

    Article  MathSciNet  MATH  Google Scholar 

  31. Walker, J.W.: Homotopy type and Euler characteristic, Europ. J. Combin. 2(1981), 373–384.

    MATH  Google Scholar 

  32. Brylawski, T.: Modular constructions for combinatorial geometries, Trans. Amer. Math. Soc. 203(1975), 1–44.

    Article  MathSciNet  MATH  Google Scholar 

  33. Brylawski, T. and Oxley, J.G.: Several identities for the characteristic polynomial of a combinatorial geometry, Discrete Math. 31(1980), 161–170.

    Article  MathSciNet  MATH  Google Scholar 

  34. Brylawski, T. and Oxley, J.G.: The broken-circuit complex: its structure and factorization, Europ. J. Combin. 2(1981), 107–121.

    MathSciNet  MATH  Google Scholar 

  35. Dowling, T.A.: A class of geometric lattices based on finite groups, J. Combin. Theory Ser. B 14(1973), 61–86.

    Article  MathSciNet  MATH  Google Scholar 

  36. Greene, C.: On the Möbius algebra of a partially ordered set, Advances in Math. 10(1973), 177–187.

    Article  MathSciNet  MATH  Google Scholar 

  37. Stanley, R.P.: Supersolvable lattices, Algebra Universalis 2(1972), 197–217.

    Article  MathSciNet  MATH  Google Scholar 

  38. Stanley, R.P.: Finite lattices and Jordan-Hölder sets, Algebra Universalis 4(1974), 361–371.

    Article  MathSciNet  MATH  Google Scholar 

  39. Basterfield, J.G. and Kelly, L.M.: A characterization of sets of n points which determine n hyperplanes, Proc. Cambridge Philos. Soc. 64(1968), 585–588.

    Article  MathSciNet  MATH  Google Scholar 

  40. Björner, A.: Some matroid inequalities, Discrete Math. 31(1980), 101–103.

    Article  MathSciNet  MATH  Google Scholar 

  41. Björner, A.: The unimodality conjecture for convex polytopes, Bull. Amer. Math. Soc. (New Series) 4(1981), 187–188.

    Article  MATH  Google Scholar 

  42. Brylawski, T.: Connected matroids with the smallest Whitney numbers, Discrete Math. 18(1977), 243–252.

    Article  MathSciNet  MATH  Google Scholar 

  43. Dowling, T.A.: Complementing permutations in finite lattices, J. Combin. Theory Ser. B 23(1977), 223–226.

    Article  MathSciNet  MATH  Google Scholar 

  44. Dowling, T.A.: On the independent set numbers of a finite matroid, Combinatorics 79, Part I, Ann. Discrete Math. 8(1980), 21–28.

    Article  MathSciNet  MATH  Google Scholar 

  45. Dowling, T.A.: On the orbit numbers of a finite geometric lattice, preprint, 1981.

    Google Scholar 

  46. Dowling, T.A. and Wilson, R.M.: The slimmest geometric lattices, Trans. Amer. Math. Soc. 196(1974), 203–215.

    Article  MathSciNet  MATH  Google Scholar 

  47. Greene, C.: A rank inequality for finite geometric lattices, J. Combin. Theory 9(1970), 357–364.

    Article  MathSciNet  MATH  Google Scholar 

  48. Greene, C.: A inequality for the Möbius function of a geometric lattice, Stud. Appl. Math. 54(1975), 71–74.

    MathSciNet  MATH  Google Scholar 

  49. Harper, L.H.: Stirling behavior is asymptotically normal, Ann. Math. Statist. 38(1967), 410–414.

    Article  MathSciNet  MATH  Google Scholar 

  50. Heron, A.P.: A property of the hyperplanes of a matroid and an extension of Dilworth’s theorem, J. Math. Anal. Appl. 42(1973), 119–131.

    Article  MathSciNet  MATH  Google Scholar 

  51. Kung, J.P.S.: The Radon transforms of a combinatorial geometry, I, J. Combin. Theory Ser. A 26(1979), 97–102.

    Article  MathSciNet  MATH  Google Scholar 

  52. Kurtz, D.C.: A note on concavity properties of triangular arrays of numbers, J. Combin. Theory Ser. A 13(1972), 135–139.

    Article  MathSciNet  MATH  Google Scholar 

  53. Lieb, E.H.: Concavity properties and a generating function for Stirling numbers, J. Combin. Theory 5(1968), 203–206.

    Article  MathSciNet  MATH  Google Scholar 

  54. Mahoney, C.R.: On unimodality of the independent set numbers of a class of matroids, J. Combin. Theory Ser. B 39(1985), 77–85.

    Article  MathSciNet  MATH  Google Scholar 

  55. Mason, J.H.: Matroids: unimodal conjectures and Motzkin’s theorem, Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972), pp. 207–220, Inst. Math. Appl., Southend-on-Sea, 1972.

    Google Scholar 

  56. Motzkin, T.S.: The lines and planes connecting the points of a finite set, Trans. Amer. Math. Soc. 70(1951), 451–464.

    Article  MathSciNet  MATH  Google Scholar 

  57. Seymour, P.D.: On the points-lines-planes conjecture, J. Combin. Theory Ser. B 33(1982), 17–26.

    Article  MathSciNet  MATH  Google Scholar 

  58. Stanley, R.P.: Two combinatorial applications of the Aleksandrov-Fenchel inequalities, J. Combin. Theory Ser. A 31(1981), 56–65.

    Article  MathSciNet  MATH  Google Scholar 

  59. Stonesifer, J.R.: Logarithmic concavity for edge lattices of graphs, J. Combin. Theory Ser. A 18(1975), 36–46.

    Article  MathSciNet  MATH  Google Scholar 

  60. Stonesifer, J.R.: Logarithmic concavity for a class of geometric lattices, J. Combin. Theory Ser. A 18(1975), 216–218.

    Article  MathSciNet  MATH  Google Scholar 

  61. Woodall, D.R.: The inequality bv, Proc. Fifth British Combinatorial Conf. (Univ. Aberdeen, Aberdeen, 1975), pp. 661–664, Congressus Numerantium, No. 15, Utilitas Math., Winnipeg, Man,. 1976.

    Google Scholar 

  62. Zaslavsky, T.: The slimmest arrangements of hyperplanes I: Geometric lattices and projective arrangements, Geometriae Dedicata 14(1983), 243–259.

    Article  MathSciNet  MATH  Google Scholar 

  63. Zaslavsky, T.: The slimmest arrangements of hyperplanes. II: Basepointed geometric lattices and Euclidean arrangements, Mathematika 28(1981), 169–190.

    Article  MathSciNet  MATH  Google Scholar 

  64. Baker, K.A.: A generalization of Sperner’s lemma, J. Combin. Theory 6(1969), 224–225.

    Article  MATH  Google Scholar 

  65. Canfield, E.R.: On a problem of Rota, Advances in Math. 29(1978), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  66. Greene, C.: A rank inequality for finite geometric lattices, J. Combin. Theory 9(1970), 357–364.

    Article  MathSciNet  MATH  Google Scholar 

  67. Greene, C. and Kleitman, D.J.: The structure of Sperner k-families, J. Combin. Theory Ser. A 20(1976), 41–68.

    Article  MathSciNet  Google Scholar 

  68. Greene, C. and Kleitman, D.J.: Proof techniques in the theory of finite sets, Studies in Combinatorics (G.-C. Rota, ed.) pp. 22–79, Math. Assoc. Amer., Washington, D.C., 1978.

    Google Scholar 

  69. Harper, L.H.: The morphology of partially ordered sets, J. Combin. Theory Ser. A 17(1974), 44–58.

    Article  MathSciNet  MATH  Google Scholar 

  70. Harper, L.H. and Rota, G.-C.: Matching theory, an introduction, Advances in Probability, Vol. 1(P. Ney, ed.), pp. 169–215, Marcel Dekker, New York, 1971.

    Google Scholar 

  71. Kahn, J.: Some non-Sperner paving matroids, Bull. London Math. Soc. 12(1980), 268.

    Article  MathSciNet  MATH  Google Scholar 

  72. Peck, G.W.: On Canfield type antichains of partitions, preprint.

    Google Scholar 

  73. Shearer, J.B.: A simple counterexample to a conjecture of Rota, Discrete Math. 28(1979), 327–330.

    Article  MathSciNet  MATH  Google Scholar 

  74. Aslander, L., and H. M. Trent: Incidence matrices and linear graphs. J. Math. Mech. 8, 827–835 (1959).

    MathSciNet  Google Scholar 

  75. Bell, E. T.: Algebraic Arithmetic. New York: Amer. Math. Soc. (1927)

    MATH  Google Scholar 

  76. Bell, E. T.: Exponential polynomials. Ann. of Math., 11. Ser. 35. 258–277 (1934).

    Article  Google Scholar 

  77. Berge, C.: Théorie des graphes et ses applications. Paris: Dounod 1958.

    Google Scholar 

  78. Birkhoff, Garrett: Lattice Theory, third preliminary edition. Harvard University. 1963.

    Google Scholar 

  79. Birkhoff, Garrett: Lattice Theory, revised edition. American Mathematical Society, 1948.

    Google Scholar 

  80. Birkhoff, G. D.: A determinant formula for the number of ways of coloring a map. Ann. of Math., II. Ser. 14, 42–46 (1913).

    Article  Google Scholar 

  81. Birkhoff, G. D., and D. C. Lewis: Chromatic polynomials. Trans. Amer. math. Soc. 60, 355–451 (1946).

    MathSciNet  MATH  Google Scholar 

  82. Bleicher, M. N., and G. B. Preston: Abstract linear dependence relations. Publ. Math., Debrecen 8, 55–63 (1961).

    MathSciNet  MATH  Google Scholar 

  83. Bougayev, N. V.: Theory of numerical derivatives. Moscow, 1870–1873, pp. 1–222.

    Google Scholar 

  84. Bruijn, N. G. de: Generalization of Polya’s fundamental theorem in enumerative combinatorial analysis. Indagationes math. 21, 59–69 (1959).

    Google Scholar 

  85. Chung, K.-L., and L. T. C. Hsu: A combinatorial formula with its application to the theory of probability of arbitrary events. Ann. math. Statistics 16, 91–95 (1945).

    Article  MathSciNet  MATH  Google Scholar 

  86. Dedekind, R.: Gesammelte Mathematische Werke, volls. I-II-III. Hamburg: Deutsche Math. Verein. (1930).

    MATH  Google Scholar 

  87. Delsarte, S.: Fonctions de Möbius sur les groupes abéliens finis. Ann. of Math., II. Ser. 49, 600–609 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  88. Dilworth, R. P.: Proof of a conjecture on finite modular lattices. Ann. of Math., II. Ser. 60, 359–304 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  89. Dirac, G. A.: On the four-color conjecture. Proc. London math. Society, III. Ser. 13, 193 to 218 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  90. Dowker, C. H.: Homology groups of relations. Ann. of Math., II. Ser. 56, 84–95 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  91. Dubreil-Jacotin, M.-L., L. Lesieur et R. Croisot: Lecons sur la théorie des treilles des structures algebriques ordonnées et des treilles géometriques. Paris: Gauthier-Villars 1953.

    Google Scholar 

  92. Eilenberg, S., and N. Steenrod: Foundations of algebraic topology. Princeton: University Press 1952.

    MATH  Google Scholar 

  93. Fary, I.: On straight-line representation of planar graphs. Acta Sci. math. Szeged 11. 229–233 (1948).

    MathSciNet  MATH  Google Scholar 

  94. Feller, W.: An introduction to probability theory and its applications, second edition. New York: Wiley 1960.

    Google Scholar 

  95. Franklin, P.: The four-color problem. Amer. J. Math. 44, 225–236 (1922).

    Article  MathSciNet  MATH  Google Scholar 

  96. Fréchet, M.: Les probabilités associées à un système d’évenements compatibles et dépendants. Actualitées scientifiques et industrielles, nos. 859 et 942. Paris: Hermann 1940 et 1943.

    Google Scholar 

  97. Frontera Marqués, B.: Una función numérica en los retículos finitos que se anula para los retículos reducibles. Actas de la 2a, Reunión de matemáticos españoles. Zaragoza 103–111 1962.

    Google Scholar 

  98. Frucht, R., and G.-C. Rota: La función de Möbius para el retículo di particiones de un conjunto finito. To appear in Scientia (Chile).

    Google Scholar 

  99. Goldberg, K., M.S. Green and R. E. Nettleton: Dense subgraphs and connectivity. Canadian J. Math. 11 (1959).

    Google Scholar 

  100. Golomb, S. W.: A mathematical theory of discrete classification. Fourth Symposium in Information Theory, London, 1961.

    Google Scholar 

  101. Green, M.S., and R. E. Nettleton: Möbius function on the lattice of dense subgraphs. J. Res. nat. Bur. Standards 64B, 41–47 (1962).

    MathSciNet  Google Scholar 

  102. Green, M.S., and R. E. Nettleton: Expression in terms of modular distribution functions for the entropy density in an infinite system. J. Chemical Physisc 29, 1365–1370 (1958).

    Article  Google Scholar 

  103. Hadwiger, H.: Eulers Charakteristik und kombinatorische Geometrie. J. reine angew. Math. 194, 101–110 (1955).

    MathSciNet  MATH  Google Scholar 

  104. Hall, Philip: A contribution to the theory of groups of prime power order. Proc. London math. Soc., II. Ser. 36, 39–95 (1932).

    Google Scholar 

  105. Hall, Philip: The Eulerian functions of a group. Quart. J. Math. Oxford Ser. 134–151, 1936.

    Google Scholar 

  106. Harary, V.: Unsolved problems in the enumeration of graphs. Publ. math. Inst. Hungar. Acad. Sci. 5, 63–95 (1960).

    MATH  Google Scholar 

  107. Hardy, G. H.: Ramanujan. Cambridge: University Press 1940.

    Google Scholar 

  108. Hardy, G. H., and E. M. Wright: An introduction to the theorv of numbers. Oxford: University Press 1954.

    Google Scholar 

  109. Hartmanis, J.: Lattice theory of generalized partitions. Canadian J. Math. 11, 97–106 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  110. Hille, E.: The inversion problems of Möbius. Duke math. J. 3, 549–568 (1937).

    Article  MathSciNet  Google Scholar 

  111. Hsu, L. T. C.: Abstract theory of inversion of iterated summation. Duke math. J. 14, 465 to 473 (1947).

    Article  MathSciNet  MATH  Google Scholar 

  112. Hsu, L. T. C.: On Romanov’s device of orthogonalization. Sci. Rep. Nat. Tsing Hua Univ. 5, 1–12 (1948).

    MathSciNet  Google Scholar 

  113. Hsu, L. T. C.: Note on an abstract inversion principle. Proc. Edinburgh math. Soc (2) 9, 71–73 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  114. Jackson, F. H.: Series connected with the enumeration of partitions. Proc. London math. Soc., II. Ser. 1, 63–88 (1904).

    Article  Google Scholar 

  115. Jackson, F. H.: The q-form of Taylor’s theorem. Messenger of Mathematics 38, 57–61 (1909).

    Google Scholar 

  116. Jónsson, B.: Lattice-theoretic approach to projective and affine geometry. Symposium on the Axiomatic Method. Amsterdam, North-Holland Publishing Company, 1959, 188–205.

    Chapter  Google Scholar 

  117. Jónsson, B., and A. Tarski: Direct decomposition of finite algebraic systems. Notre Dame Mathematical lectures, no. 5. Indiana: Notre Dame 1947.

    Google Scholar 

  118. Kac, M., and J. C. Ward: A combinatorial solution of the two-dimensional Ising model. Phys. Review 88, 1332–1337 (1952).

    Article  MATH  Google Scholar 

  119. Kaplanski, I., and J. Riordan: The problème des ménages. Scripta math. 12, 113–124 (1946).

    MathSciNet  Google Scholar 

  120. Klee, V.: The Euler characteristic in combinatorial geometry. Amer. math. Monthly 70, 119–127 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  121. Lazarson, T.: The representation problem for independence functions. J. London math. Soc. 33, 21–25 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  122. Maclane, S.: A lattice formulation of transcendence degrees and p-bases. Duke math. J. 4, 455–468 (1938).

    Article  MathSciNet  MATH  Google Scholar 

  123. MacMillan, B.: Absolutely monotone functions. Ann. of Math., II. Ser. 60, 467–501 (1954).

    Article  Google Scholar 

  124. Möbius, A. F.: Über eine besondere Art von Umkehrung der Reihen. J. reine angew. Math. 9, 105–123 (1832).

    Article  MATH  Google Scholar 

  125. Ore, O.: Theory of graphs. Providence: American Mathematical Society 1962.

    MATH  Google Scholar 

  126. Polya, G.: Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Vcrbindungen. Acta math. 68, 145–253 (1937).

    Article  Google Scholar 

  127. Rado, R.: Note on independence functions. Proc. London math. Soc., III. Ser. 7, 300–320 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  128. Read, R. C.: The enumeration of locally restricted graphs, I. J. London math. Soc. 34, 417 to 436 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  129. Redfield, J. H.: The theory of group-reduced distributions. Amer. J. Math. 49, 433–455 (1927).

    Article  MathSciNet  MATH  Google Scholar 

  130. Revuz, André: Fonctions croissantes et mesures sur les espaces topologiques ordonnés. Ann. Inst. Fourier 6 187–268 (1955).

    Article  MathSciNet  Google Scholar 

  131. Riordan, J.: An introduction to combinatorial analysis. New York: Wiley 1958.

    Google Scholar 

  132. Romanov, N. P.: On a special orthonormal system and its connection with the theory of primes. Math. Sbornik, N. S. 16, 353–364 (1945).

    Google Scholar 

  133. Rota, G.-C.: Combinatorial theory and Möbius functions. To appear in Amer. math. Monthly.

    Google Scholar 

  134. Rota, G.-C.: The number of partitions of a set. To appear in Amer. math. Monthly.

    Google Scholar 

  135. Ryser, H. J.: Combinatorial Mathematics. Buffalo: Mathematical Association of America 1963.

    MATH  Google Scholar 

  136. Schützenberger, M. P.: Contribution aux applications statistiques de la théorie de l’information. Publ. Inst. Stat. Univ. Paris, 3, 5–117 (1954).

    Google Scholar 

  137. Tarski, A.: Ordinal algebras. Amsterdam: North-Holland Publishing Company 1956.

    MATH  Google Scholar 

  138. Touchard, J.: Sur un problème de permutations. C. r. Acad. Sci., Paris, 198, 631–633 (1934).

    Google Scholar 

  139. Tutte, W. T.: A contribution to the theory of chromatic polynomials. Canadian J. Math. 6, 80–91 (1953).

    Article  MathSciNet  Google Scholar 

  140. Tutte, W. T.: A class of Abelian group. Canadian J. Math. 8, 13–28 (1950).

    Article  MathSciNet  Google Scholar 

  141. Tutte, W. T.: A homotopy theorem for matroids. I. and II. Trans. Amer. math. Soc. 88, 144–140 (1958).

    MathSciNet  MATH  Google Scholar 

  142. Tutte, W. T.: Matroids and graphs. Trans. Amer. math. Soc. 90, 527–552 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  143. Ward, M.: The algebra of lattice functions. Duke math. J. 5, 357–371 (1939).

    Article  MathSciNet  Google Scholar 

  144. Weisser, L.: Abstract theory of inversion of finite series. Trans. Amer. math. Soc. 38. 474–484 (1935).

    Article  MathSciNet  Google Scholar 

  145. Weisser, L.: Some properties of prime-power groups. Trans. Amer. math. Soc. 38, 485–492 (1935).

    Article  MathSciNet  Google Scholar 

  146. Whitney, H.: A logical expansion in mathematics. Bull. Amer. math. Soc. 38, 572–579 (1932).

    Article  MathSciNet  Google Scholar 

  147. Whitney, H.: Characteristic functions and the algebra of logic. Ann. of Math., II. Ser. 34, 405–414 (1933).

    Article  MathSciNet  Google Scholar 

  148. Whitney, H.: The abstract properties of linear dependence. Amer. J. Math. 57, 507–533 (1935).

    Article  MathSciNet  MATH  Google Scholar 

  149. Wielandt, H.: Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen eincr endlichen Gruppe. Math. Z. 73, 140–158 (1960).

    Google Scholar 

  150. Wintner, A.: Eratosthenian Averages. Baltimore (privately printed) 1943.

    Google Scholar 

  151. Eilenberg, S., & N. E. Steenrod, Foundations of Algebraic Topology, Princeton University Press, Princeton, New Jersey, 1952.

    MATH  Google Scholar 

  152. Rota, Gian-Carlo, On the Foundations of Combinatorial Theory, I. Theory of Möbius Functions, Zeitschrift für Wahrsheinlichkeitstheorie und Verwandte Gebiete, 2(1964) 340–368.

    Article  MathSciNet  MATH  Google Scholar 

  153. Garrett Birkhoff, Lattice Theory, Third Edition (American Mathematical Society, 1967).

    Google Scholar 

  154. Henry Crapo, The Möbius Function of a Lattice, J. Combinatorial Theory 1 (1966), 126–131.

    Article  MathSciNet  MATH  Google Scholar 

  155. Henry Crapo, and Gian-Carlo Rota, On the Foundations of Combinatorial Theory: Combinatorial Geometries, M.I.T. Press.

    Google Scholar 

  156. Gian-Carlo Rota, On the Foundations of Combinatorial Theory, I: Theory of Möbius Functions, Z. Wahrscheinlichkeitstheorie 2 (1964), 340–368.

    Article  MathSciNet  MATH  Google Scholar 

  157. E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928), 544–548.

    Article  MathSciNet  MATH  Google Scholar 

  158. L. H. Harper, The Morphology of Geometric Lattices (to appear).

    Google Scholar 

  159. K. A. Baker, A Generalization of Sperner’s Lemma (to appear).

    Google Scholar 

  160. J. E. McLaughlin, Structure Theorems for Relatively Complemented Lattices, Pacific J. Math. 3 (1953), 197–208.

    Article  MathSciNet  MATH  Google Scholar 

  161. J. G. Basterfield and L. M. Kelly, A characterization of sets of n points which determine n hyperplanes, Proc. Cambridge Philos. Soc. 64(1968), 585–588. MR 38 #2040.

    Article  MathSciNet  MATH  Google Scholar 

  162. J. E. Blackburn, H. H. Crapo and D. A. Higgs, A catalogue of combinatorial geometries, University of Waterloo, Waterloo, Ontario, 1969.

    Google Scholar 

  163. G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1967. MR 37 #2638.

    Google Scholar 

  164. H. H. Crapo and G.-C. Rota, On the foundations of combinatorial theory: Combinatorial geometries, M. I. T. Press, Cambridge, Mass., 1970. (preliminary edition). MR 45 #74.

    MATH  Google Scholar 

  165. R. P. Dilworth, Proof of a conjecture on finite modular lattices, Ann. of Math. (2) 60 (1954), 359–364. MR 16, 106.

    Article  MathSciNet  MATH  Google Scholar 

  166. T. A. Dowling and R. M. Wilson, The slimmest geometric lattices, Trans. Amer. Math. Soc. 196(1974), 203–215.

    Article  MathSciNet  MATH  Google Scholar 

  167. C. Greene, A rank inequality for finite geometric lattices, J. Combinatorial Theory 9 (1970), 357–364. MR 42 #1727.

    Article  MathSciNet  MATH  Google Scholar 

  168. C. Greene, Inequalities for geometric lattices, Proc. Conf. on Möbius Algebras (H. Crapo and G. Roulet, editors), University of Waterloo, Waterloo, Ont., 1971.

    Google Scholar 

  169. L. H. Harper, Stirling behaviour is asymptotically normal, Ann. Math. Statist. 38 (1967), 410–414. MR 35 #2312.

    Article  MathSciNet  MATH  Google Scholar 

  170. D. G. Kelly, Disjoining permutations in finite boolean algebras, Utilitas Mathematica 3 (1973), 65–74.

    MathSciNet  MATH  Google Scholar 

  171. E. Lieb, Concavity properties and a generating function for Stirling numbers, J. Combinatorial Theory 5 (1968), 203–206. MR 37 #6195.

    Article  MathSciNet  MATH  Google Scholar 

  172. G.-C. Rota, On the foundations of combinatorial theory. I: Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340–368. MR 30 #4688.

    Article  MathSciNet  MATH  Google Scholar 

  173. P. Young, U. S. R. Murty and J. Edmonds, Equicardinal matroids and matroid designs, Proc. Second Chapel Hill Conference on Combinatorial Mathematics and its Applications, University of North Carolina, Chapel Hill, N. C., 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rota, GC. et al. (1986). Enumeration in geometric lattices. In: A Source Book in Matroid Theory. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4684-9199-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9199-9_3

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3173-4

  • Online ISBN: 978-1-4684-9199-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics