Skip to main content

Role of Excitatory Amino Acids and Their Receptors in Bulbospinal Control of Cardiovascular Function

  • Chapter
Central Neural Mechanisms in Cardiovascular Regulation

Abstract

Recent studies have provided strong support for a key role of excitatory amino acids (EAA) and their receptors in synaptic transmission within central cardiovascular pathways in the medulla oblongata and spinal cord. This chapter will summarize that support and areas of ongoing research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal SK and Calaresu FR (1991): Monosynaptic connection from caudal to rostral ventrolateral medulla in the baroreceptor reflex pathway. Brain Res 535:70–74

    Google Scholar 

  • Agarwal SK, Gelsema AJ, Calaresu FR (1989): Neurons in rostral VLM are inhibited by chemical stimulation of caudal VLM in rats. Am J Physiol 257:R265–R270

    Google Scholar 

  • Agarwal SK, Gelsema AJ, Calaresu FR (1990): Inhibition of rostral VLM by baroreceptor activation is relayed through caudal VLM. Am J Physiol 258:R1271–R1278

    Google Scholar 

  • Andresen MC, Yang M (1990): Non-NMDA receptors mediate sensory afferent synaptic transmission in medial nucleus tractus solitarius. Am J Physiol 259:H1307–H1311

    Google Scholar 

  • Backman SB, Henry JL (1983): Effects of glutamate and aspartate on sympathetic preganglionic neurons in the upper thoracic intermediolateral nucleus of the cat. Brain Res 277:370–374

    Google Scholar 

  • Barman SM, Gebber GL (1984): Spinal intemeurons with sympathetic nerve-related activity. Am J Physiol 247:R761–R767

    Google Scholar 

  • Bamard EA, Henley JM (1990): The non-NMDA receptors: Types, protein structure and molecular biology. Trends Pharmacol Sci 11:500–507

    Google Scholar 

  • Bazil MK, Gordon FJ (1990): Blockade of parabrachial pressor responses by spinal administration of an N-methyl-D-aspartic acid receptor antagonist. Neuropharmacology 29:923–930

    Google Scholar 

  • Bazil MK, Gordon FJ (1991a): Spinal NMDA receptors mediate pressor responses evoked from the rostral ventrolateral medulla. Am J Physiol 260:H267–H275

    Google Scholar 

  • Bazil MK, Gordon FJ (1991b): Effect of blockade of spinal NMDA receptors on sympathoexcitation and cardiovascular responses produced by cerebral ischemia. Brain Res 555:149–152

    Google Scholar 

  • Bekkers JM, Stevens CF (1989): NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus. Nature 341:230–233

    Google Scholar 

  • Betz H (1990): Ligand-gated ion channels in the brain: the amino acid receptor superfamily. Neuron 5:383–392

    Google Scholar 

  • Blessing WW (1989): Baroreceptor-vasomotor reflex after N-methyl-D-aspartate receptor blockade in rabbit caudal ventrolateral medulla. J Physiol 416:67–78

    Google Scholar 

  • Blessing WW, Willoughby JO (1987): Depressor neurons in rabbit caudal ventrolateral medulla do not transmit the baroreceptor-vasomotor reflex. Am J Physiol 253:H777–H786

    Google Scholar 

  • Bonham AC, Jeske I (1989): Cardiorespiratory effects of DL-homocysteic acid in caudal ventrolateral medulla. Am J Physiol 256:H688–H696

    Google Scholar 

  • Calaresu FR, Yardley CP (1988): Medullary basal sympathetic tone. Annu Rev Physiol 50:511–524

    Google Scholar 

  • Ciriello J (1983): Brainstem projections of aortic baroreceptor afferent fibers in the rat. Neurosci Lett 36:37–42

    Google Scholar 

  • Ciriello J, Caverson CM, Polosa C (1986): Function of the ventrolateral medulla in the control of the circulation. Brain Res Rev 11:359–391

    Google Scholar 

  • Collingridge GL, Lester RAJ (1989): Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 40:143–210

    Google Scholar 

  • Conn PJ, Desai MA (1991): Pharmacology and physiology of metabotropic glutamate receptors in the mammalian central nervous system. Drug Dev Res 24:207–229

    Google Scholar 

  • Cravo SL, Morrison SF, Reis DJ (1991): Differentiation of two cardiovascular regions within caudal ventrolateral medulla. Am J Physiol 261:R985–R994

    Google Scholar 

  • Cuenod M, Do KQ, Grandes PM, Streit P (1990): Localization and release of homocysteic acid, an excitatory sulfur-containing amino acid. J Histochem Cytochem 38:1713–1715

    Google Scholar 

  • Curry K (1991): Rigid analogues as probes of excitatory amino acid receptors. Can J Physiol Pharmacol 69:1076–1083

    Google Scholar 

  • Desai MA, Conn PJ (1990): Selective activation of phosphoinositide hydrolysis by a rigid analogue of glutamate. Neurosci Lett 109:157–162

    Google Scholar 

  • Dietrich WD, Lowry OH, Loewy AD (1982): The distribution of glutamate, GABA and aspartate in the nucleus tractus solitarius of the cat. Brain Res 237:254–260

    Google Scholar 

  • Drewe JA, Miles R, Kunze DL (1990): Excitatory amino acid receptors of guinea pig medial nucleus tractus solitarius neurons. Am J Physiol 259:H1389–H1395

    Google Scholar 

  • ffrench-Mullen JMH, Koller K, Zaczek R, Coyle JT, Hori N, Carpenter DO (1985): N-aspartylglutamate: Possible role as the neurotransmitter of the lateral olfactory tract. Proc Natl Acad Sci 82:3897–3900

    Google Scholar 

  • Florentino A, Varga K, Kunos G (1990): Mechanism of the cardiovascular effects of GABAB receptor activation in the nucleus tractus solitarii of the rat. Brain Res 535:264–270

    Google Scholar 

  • Ganong AH, Cotman CW (1986): Kynurenic acid and quinolinic acid act at N-methyl-D-aspartate receptors in the rat hippocampus. J Pharmacol Exp Ther 236:293–299

    Google Scholar 

  • Gerber G, Randic M (1989): Excitatory amino acid-mediated components of synaptically evoked input from dorsal roots to deep dorsal horn neurons in the rat spinal cord slice. Neurosci Lett 106:211–219

    Google Scholar 

  • Gordon FJ (1987): Aortic baroreceptor reflexes are mediated by NMDA receptors in caudal ventrolateral medulla. Am J Physiol 252:R628–R633

    Google Scholar 

  • Gordon FJ, Leone C (1991): Non-NMDA receptors in the nucleus of the tractus solitarius play the predominant role in mediating aortic baroreceptor reflexes. Brain Res 568:319–322

    Google Scholar 

  • Gordon FJ, McCann LA (1989): Cardiopulmonary reflexes are mediated by N-methyl-D-aspartic acid receptors in caudal ventrolateral medulla. FASEB J 3:A529

    Google Scholar 

  • Granata AR, Numao Y, Kumada M, Reis DJ (1986): A1 noradrenergic neurons tonically inhibit sympathoexcitatory neurons of C1 area in rat brainstem. Brain Res 377:127–146

    Google Scholar 

  • Granata AR, Reis DJ (1983): Release of [3H]L-glutamine acid (L-Glu) and [3]D-aspartic acid (D-Asp) in the area of nucleus tractus solitarius in vivo produced by stimulation of the vagus nerve. Brain Res 259:77–93

    Google Scholar 

  • Granata AR, Ruggiero DA, Park DH, Joh TH, Reis DJ (1985): Brain stem area with C1 epinephrine neurons mediates baroreflex vasodepressor responses. Am J Physiol 248:H547–H567

    Google Scholar 

  • Granata AR, Sved AF, Reis DJ (1984): In vivo release by vagal stimulation of L-[3H] glutamic acid in the nucleus tractus solitarius preloaded with L-[3H] glutamine. Brain Res Bull 12:5–9

    Google Scholar 

  • Guyenet PG, Filtz TM, Donaldson SR (1987): Role of excitatory amino acids in rat vagal and sympathetic baroreflexes. Brain Res 407:272–284

    Google Scholar 

  • Honore T, Davies SN, Drejer J, Fletcher EJ, Jacobsen P, Lodge D, Nielsen FE (1988): Quinoxalinediones: Potent competitive non-NMDA glutamate receptor antagonists. Science 241:701–703

    Google Scholar 

  • Humphrey SJ, McCall RB (1984): Evidence that L-glutamic acid mediates baroreceptor function in the cat. Clin Exp Hypertens A6:1311–1329

    Google Scholar 

  • Imaizumi T, Granata AR, Benarroch EE, Sved AF, Reis DJ (1985): Contributions of arginine vasopressin and the sympathetic nervous system to fulminating hypertension after destruction of neurons of caudal ventrolateral medulla in the rat. J Hypertens 3:491–501

    Google Scholar 

  • Jung R, Bruce EN, Katona PG (1991): Cardiorespiratory responses to glutamatergic antagonists in the caudal ventrolateral medulla of rats. Brain Res 564:286–295

    Google Scholar 

  • Kalia M, Sullivan JM (1982): Brainstem projections of sensory and motor components of the vagus nerve in the rat. J Comp Neurol 211:248–264

    Google Scholar 

  • Kihara M, Misu Y, Kubo T (1989): Release by electrical stimulation of endogenous glutamate, gamma-aminobutyric acid, and other amino acids from slices of the rat medulla oblongata. J Neurochem 52:261–267

    Google Scholar 

  • Kircheim HR (1976): Systemic arterial baroreceptor reflexes. Physiol Rev 56:100–176

    Google Scholar 

  • Kogo N, Graff J, Grieve PA, Talman WT (1988): NMDA receptors and the baroreceptor reflex. Soc Neurosci Abst 14:503

    Google Scholar 

  • Kubo T, Kihara M (1988a): Evidence of N-methyl-D-aspartate receptor-mediated modulation of the aortic baroreceptor reflex in the rat nucleus tractus solitarii. Neurosci Lett 87:69–74

    Google Scholar 

  • Kubo T, Kihara M (1988b): N-methyl-D-aspartate receptors mediate tonic vasodepressor control in the caudal ventrolateral medulla of the rat. Brain Res 451:366–370

    Google Scholar 

  • Kubo T, Kihara M (1991): Unilateral blockade of excitatory amino acid receptors in the nucleus tractus solitarii produces an inhibition of baroreflexes in rats. Naunyn Schmiedebergs Arch Pharmacol 343:317–322

    Google Scholar 

  • Kubo T, Kihara M, Misu Y (1991): Ipsilateral but not contralateral blockade of excitatory amino acid receptors in the caudal ventrolateral medulla inhibits aortic baroreceptor reflexes. Naunyn Schmiedebergs Arch Pharmacol 343:46–51

    Google Scholar 

  • Lambert JDC, Jones RSG (1989): Activation of N-methyl-D-aspartate receptors contributes to the EPSP at perforant path synapses in the rat dentate gyrus in vitro. Neurosci Lett 97:323–328

    Google Scholar 

  • Le Galloudec E, Merahi N, Laguzzi R (1989): Cardiovascular changes induced by the local application of glutamate-related drugs in the rat nucleus tractus solitarii. Brain Res 503:322–325

    Google Scholar 

  • Leone C, Gordon FJ (1989): Is L-glutamate a neurotransmitter of baroreceptor information in the nucleus of the tractus solitarius? J Pharmacol Exp Ther 250:953–962

    Google Scholar 

  • Leslie RA (1985): Neuroactive substances in the dorsal vagal complex of the medulla oblongata: Nucleus of the tractus solitarius, area postrema, and dorsal motor nucleus of the vagus. Neurochem Intl 7:191–211

    Google Scholar 

  • Li Y-W, Blessing WW (1990): Localization of vasodepressor neurons in the caudal ventrolateral medulla in the rabbit. Brain Res 517:57–63

    Google Scholar 

  • Li Y-W, Gieroba ZJ, McAllen RM, Blessing WW (1991): Neurons in rabbit caudal ventrolateral medulla inhibit bulbospinal barosensitive neurons in rostral medulla. Am J Physiol 261:R44–R51

    Google Scholar 

  • Logan WJ, Snyder SH (1972): High affinity uptake systems for glycine, glutamic and aspartic acids in synaptosomes of rat central nervous tissues. Brain Res 42:413–431

    Google Scholar 

  • Masuda N, Terui N, Koshiya N, Kumada M (1991): Neurons in the caudal ventrolateral medulla mediate the arterial baroreceptor reflex by inhibiting barosensitive reticulospinal neurons in the rostral ventrolateral medulla in rabbits. J Auton Nerv Syst 34:103–118

    Google Scholar 

  • Mayer ML, Westbrook GL (1987): The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28:197–276

    Google Scholar 

  • McCall RB (1988): Effects of putative neurotransmitters on sympathetic preganglionic neurons. Annu Rev Physiol 50:553–564

    Google Scholar 

  • McCall RB, Gebber GL, Barman SM (1977): Spinal intemeurons in the baroreceptor reflex arc. Am J Physiol 232:H657–H665

    Google Scholar 

  • Meeley MP, Underwood MD, Talman WT, Reis DJ (1989): Content and in vitro release of endogenous amino acids in the area of the nucleus of the solitary tract of the rat. J Neurochem 53:1807–1817

    Google Scholar 

  • Miller BD, Felder RB (1988): Excitatory amino acid receptors intrinsic to synaptic transmission in nucleus tractus solitarii. Brain Res 456:333–343

    Google Scholar 

  • Mills E, Minson J, Drolet G, Chalmers J (1990): Effect of intrathecal amino acid receptor antagonists on basal blood pressure and pressor responses to brainstem stimulation in normotensive and hypertensive rats. J Cardiovasc Pharmacol 15:877–883

    Google Scholar 

  • Mills EH, Minson JB, Pilowsky PM, Chalmers JP (1988): N-methyl-D-aspartate receptors in the spinal cord mediate pressor responses to stimulation of the rostral ventrolateral medulla in the rat. Clin Exp Pharmacol Physiol 15:147–155

    Google Scholar 

  • Minson J, Pilowsky P, Llewellyn-Smith I, Kaneko T, Kapoor V, Chalmers J (1991): Glutamate in spinally projecting neurons of the rostral ventral medulla. Brain Res 555:326–331

    Google Scholar 

  • Mo N, Dun NJ (1987): Excitatory postsynaptic potentials in neonatal rat sympathetic preganglionic neurons: Possible mediation by NMDA receptors. Neurosci Lett 77:327–332

    Google Scholar 

  • Morrison SF, Callaway J, Milner TA, Reis DJ (1989a): Glutamate in the spinal sympathetic intermediolateral nucleus: Localization by light and electron microscopy. Brain Res 503:5–15

    Google Scholar 

  • Morrison SF, Callaway J, Milner TA, Reis DJ (1991): Rostral ventrolateral medulla: A source of glutamatergic innervation of the sympathetic intermediolateral nucleus. Brain Res 562:126–135

    Google Scholar 

  • Morrison SF, Ernsberger P, Milner TA, Callaway J, Gong A, Reis DJ (1989b): A glutamate mechanism in the intermediolateral nucleus mediates sympathoexcitatory responses to stimulation of the rostral ventrolateral medulla. In: Progress in Brain Research, Vol. 81, Ciriello, J, Caverson, MM, Polosa, C, eds. Amsterdam: Elsevier

    Google Scholar 

  • Murugaian J, Sundaram K, Krieger A, Sapru H (1989): Electrolytic lesions in the depressor area of the ventrolateral medulla of rat abolish depressor responses to the aortic nerve stimulation. Brain Res 499:371–377

    Google Scholar 

  • Nelson DO, Cohen HL, Feldman JL, McCrimmon DR (1988): Cardiovascular function is altered by picomole injections of glutamate into rat medulla. J Neurosci 8:1684–1693

    Google Scholar 

  • Nicholas AP, Cuello AC, Goldstein M, Hokfelt T (1990): Glutamate-like immunoreactivity in medulla oblongata catecholamine/substance P neurons. Neuro Report 1:235–238

    Google Scholar 

  • Nishi S, Yoshimura M, Polosa C (1987): Synaptic potentials and putative transmitter actions in sympathetic preganglionic neurons. In: Organization of the Autonomic Nervous System: Central and Peripheral Mechanisms, Ciriello J, Calaresu FR, Renaud LP, Polosa C, eds. New York: Alan R Liss

    Google Scholar 

  • Ohta H, Lewis SJ, Talman WT (1991): Inhibition of the baroreflex by microinjection of MK801 into nucleus tractus solitarii of rats. FASEB J 5:A743

    Google Scholar 

  • Ohta H, Talman WT (1991): Blockade of NMDA receptors in nucleus tractus solitarii inhibits baro-and chemoreceptor reflex responses to stimulation of carotid sinus nerve in rat. Soc Neurosci Abst 17:340

    Google Scholar 

  • Pawloski-Dahm C, Gordon FJ (1992): Evidence for a kynurenate-insensitive glutamate receptor in the nucleus tractus solitarius. Am J Physiol 262:H1611–H1615

    Google Scholar 

  • Pellegrini-Giampietro DE, Galli A, Alesiani M, Cherici G, Moroni F (1989): Quinoxalines interact with the glycine recognition site of NMDA receptors: Studies in guinea-pig myenteric plexus and in rat cortical membranes. Br J Pharmacol 98:1281–1286

    Google Scholar 

  • Perrone MH (1981): Biochemical evidence that L-glutamate is a neurotransmitter of primary vagal afferent nerve fibers. Brain Res 230:283–293

    Google Scholar 

  • Pullan LM, Olney JW, Price MT, Compton RP, Hood WF, Michel J, Monahan JB (1987): Excitatory amino acid receptor potency and subclass specificity of sulfur-containing amino acids. J Neurochem 49:1301–1307

    Google Scholar 

  • Reis DJ, Granata AR, Joh TH, Ross CA, Ruggiero DA, Park DH (1984): Brain stem catecholamine mechanisms in tonic and reflex control of blood pressure. Hypertension 6 (Suppl II):II–7–II–15

    Google Scholar 

  • Ross CA, Ruggiero DA, Joh TH, Park DH, Reis DJ (1984): Rostral ventrolateral medulla: Selective projections to the thoracic autonomic cell column from the region containing C1 adrenaline neurons. J Comp Neurol 228:168–185

    Google Scholar 

  • Ross CA, Ruggiero DA, Reis DJ (1985): Projections from the nucleus tractus solitarii to the rostral ventrolateral medulla. J Comp Neurol 242:511–534

    Google Scholar 

  • Schaffar N, Pio J, Jean A (1990): Selective retrograde labeling of primary vagal afferent cell-bodies after injection of [3H]D-aspartate into the rat nucleus tractus solitarii. Neurosci Lett 114:253–258

    Google Scholar 

  • Shen E, Mo N, Dun NJ (1990): APV-sensitive dorsal root afferent transmission to neonate rat sympathetic preganglionic neurons in vitro. J Neurophysiol 64:991–999

    Google Scholar 

  • Siemers ER, Rea MA, Felton DL, Aprison MH (1982): Distribution and uptake of glycine, glutamate and gamma aminobutyric acid in the vagal nuclei and eight other regions of the rat medulla oblongata. Neurochem Res 7:455–468

    Google Scholar 

  • Simon JR, DiMicco SK, DiMicco JA, Aprison MH (1985): Choline acetyltransferase and glutamate uptake in the nucleus tractus solitarius and dorsal motor nucleus of the vagus: Effect of nodose ganglionectomy. Brain Res 344:405–408

    Google Scholar 

  • Somogyi P, Minson JB, Morilak D, Llewellyn-Smith I, McIlhinney JRA, Chalmers J (1989): Evidence for an excitatory amino acid pathway in the brainstem and for its involvement in cardiovascular control. Brain Res 496:401–407

    Google Scholar 

  • Streit P (1980): Selective retrograde labeling indicating the transmitter of neuronal pathways. J Comp Neurol 191:429–463

    Google Scholar 

  • Sun M-K, Hackett JT, Guyenet PG (1988): Sympathoexcitatory neurons of the rostral ventrolateral medulla exhibit pacemaker properties in the presence of a glutamate-receptor antagonist. Brain Res 438:23–40

    Google Scholar 

  • Sundaram K, Murugaian J, Sapru H (1989): Cardiac responses to the microinjections of excitatory amino acids into the intermediolateral cell column of the rat spinal cord. Brain Res 482:12–22

    Google Scholar 

  • Sundaram K, Sapru H (1991): NMDA receptors in the intermediolateral column of the spinal cord mediate sympathoexcitatory cardiac responses elicited from the ventrolateral medullary pressor area. Brain Res 544:33–41

    Google Scholar 

  • Sved AF (1986): Lack of change in high affinity glutamate uptake in nucleus tractus solitarius following removal of the nodose ganglion. Brain Res Bull 16:325–329

    Google Scholar 

  • Sved AF, Backes MG (1992): Neuroanatomical evidence that vagal afferent nerves do not possess a high affinity uptake system for glutamate. J Auton Nerv Syst 38:219–230

    Google Scholar 

  • Talman WT (1989): Kynurenic acid microinjected into the nucleus tractus solitarius of rat blocks the arterial baroreflex but not responses to glutamate. Neurosci Lett 102:247–252

    Google Scholar 

  • Talman WT, Granata AR, Reis DJ (1984): Glutamatergic mechanisms in the nucleus tractus solitarius in blood pressure control. Fed Proc 43:39–44

    Google Scholar 

  • Talman WT, Perrone MH, Reis DJ (1980): Evidence for L-glutamate as the neurotransmitter of baroreceptor afferent nerve fibers. Science 209:813–815

    Google Scholar 

  • Talman WT, Perrone MH, Scher P, Kwo S, Reis DJ (1981): Antagonism of the baroreceptor reflex by glutamate diethyl ester, an antagonist to L-glutamate. Brain Res 217:186–191

    Google Scholar 

  • Terui N, Masuda N, Saeki Y, Kumada M (1990): Activity of barosensitive neurons in the caudal ventrolateral medulla that send axonal projections to the rostral ventrolateral medulla in rabbits. Neurosci Lett 118:211–214

    Google Scholar 

  • Urbanski RW, Sapru HN (1988): Putative neurotransmitters involved in medullary cardiovascular regulation. J Auton Nerv Syst 25:181–193

    Google Scholar 

  • Van der Kooy D, Koda LY, McGinty JF, Gerfen CR, Bloom FE (1984): The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J Comp Neurol 224:1–24

    Google Scholar 

  • Verberne AJM, Beart PM, Louis WJ (1989): Excitatory amino acid receptors in the caudal ventrolateral medulla mediate a vagal cardiopulmonary reflex in the rat. Exp Brain Res 78:185–192

    Google Scholar 

  • Verbeme AJM, Widdop RE, Maccarrone C, Jarrott B, Beart PM, Louis W (1990): Intrathecal kynurenate reduces arterial pressure, heart rate and baroreceptor-heart rate reflex in conscious rats. Neurosci Lett 114:309–315

    Google Scholar 

  • Willette RN, Krieger AJ, Barcas PP, Sapru HN (1983): Medullary gamma-aminobutyric acid (GABA) receptors and the regulation of blood pressure in the rat. J Pharmacol Exp Ther 226:893–899

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Boston

About this chapter

Cite this chapter

Gordon, F.J., Talman, W.T. (1992). Role of Excitatory Amino Acids and Their Receptors in Bulbospinal Control of Cardiovascular Function. In: Kunos, G., Ciriello, J. (eds) Central Neural Mechanisms in Cardiovascular Regulation. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-9184-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9184-5_7

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-9186-9

  • Online ISBN: 978-1-4684-9184-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics