Skip to main content

Centrally Mediated Cardiovascular Effects of Taurine

  • Chapter
Central Neural Mechanisms in Cardiovascular Regulation
  • 69 Accesses

Abstract

Taurine, which is synthesized from methionine in vivo, is a sulfur amino acid widely distributed in mammalian tissues, especially in brain, heart, and skeletal muscle. Taurine has been extensively studied for its cardiovascular actions. In stroke-prone spontaneously hypertensive rats (SHRSP) (Nara et al., 1978), spontaneously hypertensive rats (SHR) (Abe et al., 1987), and deoxycorticosterone acetate (DOCA)-salt hypertensive rats (Fujita and Sato, 1986; Inoue et al., 1988), the administration of taurine could attenuate the development of hypertension (Fig. 5.1). The antihypertensive effect of taurine is most pronounced in a salt-induced hypertensive model associated with increased sympathetic activity (Bouvier and de Champlain, 1986; Sato et al., 1991), such as the DOCA-salt rat (Fujita and Sato, 1986; Inoue et al., 1988). In addition, taurine has other cardiovascular actions, such as negative inotropic and positive chronotropic effects on heart (Huxtable and Sebring, 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe M, Shibata K, Matsuda T, Furukawa T (1987): Inhibition of hypertension and salt intake by oral taurine treatment in hypertensive rats. Hypertension 10:383–389

    Google Scholar 

  • Bousquet P, Feldman J, Bloch R, Schwartz J (1981): Central cardiovascular effects of taurine: Comparison with homotaurine and mucimol. J Pharmacol Exp Ther 219:213–218

    Google Scholar 

  • Bouvier M, de Champlain J (1986): Increased sympatho-adrenal tone and adrenal medulla reactivity in DOCA-salt hypertensive rats. J Hypertens 4:157–1

    Article  Google Scholar 

  • Brodie BB, Costa E, Dlabac A, Neff NH, Smookler HH (1966): Application of steady state kinetics to the estimation of synthesis rate and turnover time of tissue catecholamines. J Pharmacol Exp Ther 154:493–498

    Google Scholar 

  • Calaresu FR, Ciriello J (1981): Renal afferent nerves affect discharge rate of medullary and hypthalamic signal units in the cat. J Auton Nerv Syst 3:311–320

    Article  Google Scholar 

  • Cardenas HL, Ross DH (1976): Calcium depletion of synaptosomes after morphine treatment. Br J Pharmacol 57:521–526

    Google Scholar 

  • de Champlain J, Krakoff L, Axcelrod J (1969): Interrelationships of sodium intake, hypertension, and norepinephrine storage in the rat. Circ Res 24/25(Suppl I):75–92

    Google Scholar 

  • Einhorn D, Young JB, Landsberg L (1982): Hypotensive effect of fasting: possible involvement of the sympathetic nervous system and endogenous opiates. Science 217:727–729

    Article  Google Scholar 

  • Faden AI, Holaday JW (1979): Opiate antagonists: A role in the treatment of hypovolemic shock. Science 205:317–318

    Article  Google Scholar 

  • Falkner B, Onesti G, Angelakos T, Femandes M, Langman C (1979): Cardiovascular response to mental stress in normal adolescents with hypertensive parents: Hemodynamic and mental stress in adolescent. Hypertension 1:23–30

    Google Scholar 

  • Farsang C, Kaposci J, Juhasz I, Kunos G (1982): Possible involvement of an endogenous opioid in the antihypertensive effect of Clonidine in patients with essential hypertension. Circulation 66:1268–1272

    Article  Google Scholar 

  • Farsang C, Ramirez-Gonzales MD, Mucci L, Kunos G (1980): Possible role of an endogenous opiate in the cardiovascular effects of central α adrenoceptor stimulation in spontaneously hypertensive rats. J Pharmacol Exp Ther 214:203–208

    Google Scholar 

  • Fujita T, Ando K, Noda H, Ito Y, Sato Y (1987): Effects of increased adrenomedullary activity and taurine in young patients with borderline hypertension. Circulation 3:525–532

    Article  Google Scholar 

  • Fujita T, Ando K, Ogata E (1990): Systemic and regional hemodynamics in patients with salt-sensitive hypertension. Hypertension 16:235–244

    Google Scholar 

  • Fujita T, Noda H (1983): The hemodynamics in young patients with borderline hypertension. Jpn Circ J 47:795–801

    Article  Google Scholar 

  • Fujita T, Noda H, Ando K (1984): Sodium susceptibility and potassium effects in young patients with borderline hypertension. Circulation 69:468–476

    Article  Google Scholar 

  • Fujita T, Sato Y (1984): Changes in renal and central noradrenergic activity with potassium in DOCA-salt rats. Am J Physiol 246:F670–F675

    Google Scholar 

  • Fujita T, Sato Y (1986): Changes in blood pressure and extracellular fluid with taurine in DOCA-salt rats. Am J Physiol 250:R1014–R1020

    Google Scholar 

  • Fujita T, Sato Y (1988): Hypotensive effect of taurine: Possible involvement of the sympathetic nervous system and endogenous opiates. J Clin Invest 82:993–997

    Article  Google Scholar 

  • Fujita T, Sato Y, Ando K (1986): Changes in cardiac and hypothalamic noradrenergic activity with taurine in DOCA-salt rats. Am J Physiol 251:H926–H933

    Google Scholar 

  • Furukawa T, Yamada T, Kushiku K, Ono N, Tokunaga T (1982): Central effects of taurine: Antagonistic effects on central actions of angiotensin II. In: Taurine in Nutrition and Neurology, Huxtable RJ, Pasantes-Morales, eds. New York: Plenum, 345–359

    Google Scholar 

  • Glowinski J, Iversen LL (1966): The disposition of [3H]norepinephrine, [3H]dopamine, [3H]dopa in various regions of the brain. J Neurochem 13:655–669

    Article  Google Scholar 

  • Gordon R, Spector S, Sjoerdsma A, Udenfriend S (1966): Increased synthesis of norepinephrine and epinephrine in the intact rat during exercise and exposure to cold. J Pharmacol Exp Ther 153:440–447

    Google Scholar 

  • Guerrero-Munoz F, Guerrero ML, Way EL (1979): Effect of Ăź-endorphin on calcium uptake in the brain. Science 206:89–91

    Article  Google Scholar 

  • Haas HL, Hosli L (1973): The depression of brain stem neurons by taurine and its interaction with strychnine and bicuculline. Brain Res 52:399–402

    Article  Google Scholar 

  • Hardy JD, Hellon RF, Sutherland K (1964): Temperature-sensitive neurons in the dog’s hypothalamus. J Physiol 175:242–253

    Google Scholar 

  • Harris RA, Yamamoto H, Loh HH, Way EL (1977): Discrete changes in brain calcium with morphine analgesia, tolerance-dependence, and abstinence. Life Sci 20:501–506

    Article  Google Scholar 

  • Holaday JW, Faden AI (1978): Naloxone reversal of endotoxin hypotension suggests role of endorphin in shock. Nature 275:450–451

    Article  Google Scholar 

  • Horikoshi Y, Tajima I, Igarashi H, Inui M, Kasahara K, Noguchi T (1985): The adrenosympathetic system, the genetic predisposition to hypertension, and stress. Am J Med Sci 289:186–191

    Article  Google Scholar 

  • Huxtable RJ, Sebring L (1982): Cardiovascular actions of taurine. Sulfur Amino Acid 5:29–51

    Google Scholar 

  • Inoue A, Takahashi H, Lee L-C, Sasaki S, Kohno Y, Takeda K, Yoshimura M, Nakagawa M (1988): Retardation of the development of hypertension in DOCA salt rats by taurine supplement. Cardiovasc Res 22:351–358

    Article  Google Scholar 

  • Izumi K, Munekata E, Barbeau A, Nakanishi T, Yoneda M, Yamamoto H, Fukuda T (1982): Effects of taurine on tolerance to [D-Ala2, Met5] enkephalinamide in rats. Eur J Pharmacol 82:55–63

    Article  Google Scholar 

  • Izumi K, Munekata E, Yamamoto H, Nakanishi T, Barbeau A (1980): Effects of taurine and Îł-aminobutyric acids on akinesia and analgesia induced by [D-Ala2, Met5] enkephalinamide in rats. Peptide 1:139–145

    Google Scholar 

  • Janssen HF, Lutherer LO (1980): Ventriculocisternal administration of naloxone protects against severe hypotension during endotoxin shock. Brain Res 194:608–612

    Article  Google Scholar 

  • Kunos G, Farsang C (1981): β-endorphin: Possible involvement in the antihypertensive effect of central α-receptor activation. Science 211:82–84

    Article  Google Scholar 

  • Kuriyama K (1980): Taurine as a neurotransmitter. Fed Proc 39:2680–2684

    Google Scholar 

  • Kuriyama K, Nakagawa K (1976): Role of taurine in adrenal gland: A preventive effects on stress-induced release of catecholamines from chromaffin granules. In: Taurine, Huxtable R, Barbeau A, eds. New York: Raven Press, 335–343

    Google Scholar 

  • Kuriyama K, Yoneda Y (1978): Morphine induced alterations of Îł-aminobutyric acid and taurine contents and L-glutamate decarboxylase activity in rat spinal cord and thalamus: Possible correlates with analgesic action of morphine. Brain Res 148:163–179

    Article  Google Scholar 

  • Lundin S, Thoren P (1982): Renal function and sympathetic activity during mental stress in normotensive and spontaneously hypertensive rats. Acta Physiol Scand 115:115–124

    Article  Google Scholar 

  • Muramatsu M, Kakita K, Nakagawa K, Kuriyama K (1978): A modulating role of taurine on release of acetylcholine and norepinephrine from neuronal tissue. Jpn J Pharmacol 28:259–268

    Article  Google Scholar 

  • Nakamura K, Gerold M, Thoenen H (1971): Experimental hypertension of the rat: Reciprocal changes of norepinephrine turnover in heart and brain-stem. Naunnyn-Schmiedeberg’s Arch Pharmacol 268:125–139

    Article  Google Scholar 

  • Nara Y, Yamori Y, Lovenberg W (1978): Effects of dietary taurine on blood pressure in spontaneously hypertensive rats. Biochem Pharmacol 27:2689–2692

    Article  Google Scholar 

  • Niijima A (1981): Visceral afferents and metabolic function. Diabetologia 20:325–330

    Article  Google Scholar 

  • Patel KP, Ciriello J, Kline RL (1981): Noradrenergic mechanisms in brain and peripheral organs after aortic nerve transection. Am J Physiol 240:H481–H486

    Google Scholar 

  • Petty MA, de Jong W (1982): Cardiovascular effect of β-endorphin after microinjection into the nucleus tractus solitarii of the anaesthized rat. Eur J Pharmacol 81:449–457

    Article  Google Scholar 

  • Sato Y, Ando K, Fujita T (1987): Role of sympathetic nervous system in hypertensive action of taurine in DOCA-salt rats. Hypertension 9:81–87

    Google Scholar 

  • Sato Y, Ogata E, Fujita T (1991): Hypotensive action of taurine in DOCA-salt rats: Involvement of sympathoadrenal inhibition and endogenous opiate. Jpn Circ J 55:500–508

    Article  Google Scholar 

  • Shaw RK, Heine JD (1965): Ninhydrin positive substances present in different areas of normal rat’s brain. J Neurochem 12:151–155

    Article  Google Scholar 

  • Sitsen JMA, van Ree JM, de Jong W (1982): Cardiovascular and respiratory effects of β-endorphin in anesthetized and conscious rats. J Cardiovasc Pharmacol 4:883–888

    Article  Google Scholar 

  • Tedesco JL, Flattery KV, Sellers EA (1977): Effects of thyroid hormones and cold exposure on turnover of norepinephrine in cardiac and skeletal muscle. Can J Physiol Pharmacol 55:515–522

    Article  Google Scholar 

  • Tobey JC, Fry HK, Mizejewski CS, Fink GD, Weaver LC (1983): Differential sympathetic responses initiated by angiotensin and sodium chloride. Am J Physiol 245:R60–R68

    Google Scholar 

  • Yamamoto H, Harris RA, Loh H, Way EL (1978): Effects of acute and chronic morphine treatments on calcium localization and binding in brain. J Pharmacol Exp Ther 205:255–264

    Google Scholar 

  • Yamamoto H, McCain HW, Izumi K, Misawa S, Way EL (1981): Effects of amino acids, especially taurine and Îł-aminobutyric acid (GABA), on analgesia and calcium depletion induced by morphine in mice. Eur J Pharmacol 71:177–184

    Article  Google Scholar 

  • Zeils R, Mansour EJ, Capone RJ, Mason DT (1974): The cardiovascular effects of morphine: The peripheral capacitance and resistance vessels in human subjects. J Clin Invest 54:1247–1258

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Boston

About this chapter

Cite this chapter

Ando, K., Fujita, T. (1992). Centrally Mediated Cardiovascular Effects of Taurine. In: Kunos, G., Ciriello, J. (eds) Central Neural Mechanisms in Cardiovascular Regulation. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-9184-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9184-5_5

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-9186-9

  • Online ISBN: 978-1-4684-9184-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics