Skip to main content

GABAB Receptors in the Nucleus Tractus Solitarius in Cardiovascular Regulation

  • Chapter
Central Neural Mechanisms in Cardiovascular Regulation

Abstract

The nucleus tractus solitarius (NTS), the site of termination of primary baroreceptor afferent nerves (Kalia and Sullivan, 1982; Kalia, 1981), plays a role in cardiovascular regulation (Spyer, 1990). Many neuroactive substances have been shown to be present in the NTS, many of which have been shown to play some role in the regulation of arterial blood pressure (AP) (Leslie, 1985; Talman et al, 1984). Still, the manner in which any specific neurotransmitter in the NTS acts physiologically in the regulation of AP has not been clearly elucidated. This chapter reviews the evidence that GABA, by acting on GABAB receptors in the NTS, contributes to the regulation of AP by modulating the baroreceptor reflex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Dahan M, Tehrani MHJ, Thalmann RH (1990): Effect of 2-hydroxy-saclofen, an antagonist of GABAB action, upon binding of baclofen and other receptor ligands in rat cerebrum. Brain Res 526:308–312.

    Article  Google Scholar 

  • Alger BE (1985): GABA and glycine: postsynaptic actions. In: Neurotransmitter Actions in the Vertebrate Nervous System, Rogawski MA, Barker JL, eds. New York: Plenum Pre

    Google Scholar 

  • Allan RD, Johnston GAR, Twitchin B (1977): Effects of gabaculline on the uptake, binding and metabolism of GABA. Neurosci Lett 4:51–54.

    Article  Google Scholar 

  • Andresen MC, Yang M (1990): Non-NMDA receptors mediate sensory afferent synaptic transmission in medial nucleus tractus solitarius. Am J Physiol 259:H1307–H1311.

    Google Scholar 

  • Aran S, Hammond DL (1991): Antagonism of baclofen-induced antinociception by intrathecal administration of phaclofen or 2-hydroxy-saclofen, but not aminovaleric acid in the rat. J Pharmacol Exp Ther 257:360–368

    Google Scholar 

  • Bennett JA, McWilliam PN, Shepheard SL (1987): A Îł-aminobutyric-acid-mediated inhibition of neurones in the nucleus tractus solitarius of the cat. J Physiol 392:417–430

    Google Scholar 

  • Benveniste H(1989): Brain microdialysis. J Neurochem 52:1667–1679

    Google Scholar 

  • Berlin MF, Nanopoulos D, Didier M, et al. (1983): Immunohistochemical evidence for the presence of gamma-aminobutyric acid and serotonin in one nerve cell. A study on the raphe nuclei of the rat using antibodies to glutamate decarboxylase and serotonin. Brain Res 275:329–339

    Article  Google Scholar 

  • Bittiger H, Froestl W, Hall R, et al. (1990): Biochemistry, electrophysiology and pharmacology of a new GABAB antagonist: CGP 35348. In: GABIAB Receptors in Mammalian Function, Bowery NG, Bittiger H, Olpe H-R, eds. New York: John Wiley and Sons L

    Google Scholar 

  • Blessing WW (1990): Distribution of glutamate decarboxylase-containing neurons in rabbit medulla oblongata with attention to intramedullary and spinal projections. Neuro-science 37:171–185

    Google Scholar 

  • Blessing WW, Oertel WH, Willoughby JO (1984): Glutamic acid decarboxylase immuno-reactivity is present in perikarya of neurons in nucleus tractus solitarius of rat. Brain Res 322:346–350

    Article  Google Scholar 

  • Bousquet P, Feldman J, Bloch R, Schwartz J(1982): Evidence for a neuromodulatory role of GABA at the first synapse of the baroreceptor reflex pathway. Effects of GABA derivatives injected into the NTS. Naunyn-Schmiedeberg s Arch Pharmacol 319:168–171

    Article  Google Scholar 

  • Bousquet P, Feldman J, Schwartz J (1985): The medullary cardiovascular effects of imidazolines and some GABA analogues: a review. J Autonom Nerv Sys 14:263–270

    Article  Google Scholar 

  • Bowery NG (1989): GABAB receptors and their significance in mammalian pharmacology. Trends Pharmacol Sci 10:401–407

    Article  Google Scholar 

  • Bowery NG, Hudson AL, Price GW (1987): GABA-A and GABA-B receptor binding site distribution in the rat central nervous system. Neuroscience 20:365–383

    Article  Google Scholar 

  • Catelli JM, Giakas WJ, Sved AF (1987): GABAergic mechanisms in nucleus tractus solitarius alter blood pressure and vasopressin release. Brain Res 403:279–289

    Article  Google Scholar 

  • Champagnet J, Denavit-Saubie M, Grant K, Shen KF (1986): Organization of synaptic transmission in the mammalian solitary complex, studied in vitro. J Physiol 381:551–573

    Google Scholar 

  • Curtis DR, Gynther BD, Beatie DT, Kerr DIB, Prager RH (1988): Baclofen antagonism by 2-hydroxy-saclofen in the cat spinal cord. Neurosci Lett 92:97–101

    Article  Google Scholar 

  • Dietrich WD, Lowry OH, Loewy AD (1982): The distribution of glutamate, GABA, and aspartate in the nucleus tractus solitarius of the cat. Brain Res 237:254–260

    Article  Google Scholar 

  • DiMicco JA, Gale K, Hamilton B, Gillis RA (1979): GABA receptor control of parasympathetic outflow to heart characterization and brainstem location. Science 204:1106–1109

    Article  Google Scholar 

  • Doba N, Reis DJ (1973): Acute fulminating hypertension produced by brainstem lesions in the rat. Circ Res 32:584–593

    Google Scholar 

  • Dutar P, Nicoll RA (1988): Pre-and postsynaptic GABAB receptors in the hippocampus have different pharmacological properties. Neuron 1:585–591

    Article  Google Scholar 

  • Felder RB, Heesch CH (1987): Interactions in nucleus tractus solitarius between right and left carotid sinus nerves. Am J Physiol 253:H1127–H1135

    Google Scholar 

  • Florentino A, Varga K, Kunos G (1990): Mechanism of the cardiovascular effects of GABAB receptor activation in the nucleus tractus solitarii of the rat. Brain Res 535:264–270

    Article  Google Scholar 

  • Fox S, Krnjevic K, Morris ME, Puil E, Werman R (1978): Action of baclofen on mammalian synaptic transmission. Neuroscience 3:495–515

    Article  Google Scholar 

  • Fuxe K, Agnati LF (1991): Volume Transmission in the Brain: Novel Mechanisms for Neural Transmission. New York: Raven Press

    Google Scholar 

  • Gale K, Hamilton BL, Brown SC, Norman WP, Dias Souza J, Gillis RA (1980): The presence of GABA and specific GABA binding sites in cat brain nuclei associated with central vagal outflow. Brain Res Bull 5(Suppl 2):324–328

    Google Scholar 

  • Gillis RA, Yamada KA, DiMicco JA, et al. (1984): Central Îł-aminobutyric acid involvement in blood pressure control. Fed Proc 43:32–38

    Google Scholar 

  • Gordon FJ, Leone C (1991): Non-NMDA receptors in the NTS play the predominant role in mediating aortic baroreceptor reflexes. Brain Res 568:319–322

    Article  Google Scholar 

  • Hammond EJ, Wilder BJ (1985): Gamma-vinyl GABA. Gen Pharmac 16:441–447

    Article  Google Scholar 

  • Harrison NL, Lovinger DM, Lambert NA, et al. (1990): Antagonism at presynaptic GABAB receptors in the rat hippocampus by 2-hydroxy-saclofen. Neurosci Lett 119:272–276

    Article  Google Scholar 

  • Herkenham M (1991): Mismatches between neurotransmitter and receptor localizations: implications for endocrine functions in brain. In: Volume Transmission in the Brain: Novel Mechanisms for Neural Transmission, Fuxe K, Agnati LF, eds. New York: Raven Pre

    Google Scholar 

  • Honore T, Davies SN, Drejer J, et al. (1988): Quinoxalinediones: Potent competitive non-NMDA glutamate receptor antagonists. Science 241:701–703

    Article  Google Scholar 

  • Hwang BH, Wu J-Y (1984): Ultrastructural studies on catecholaminergic terminals and GABAergic neurons in nucleus tractus solitarius of the rat medulla oblongata. Brain Res 302:57–67

    Article  Google Scholar 

  • Iadarola MJ, Gale K (1981): Cellular compartments of GABA in brain and their relationship to anticonvulsant activity. Mot Cell Biochem 39:305–330

    Article  Google Scholar 

  • Jordan D, Mifflin SW, Spyer KM (1988): Hypothalamic inhibition of neurons in the nucleus tractus solitarius of the cat is GABA mediated. J Physiol 399:389–404

    Google Scholar 

  • Jung MJ, Lippert B, Metcalf BW, Bohlen P, Schechter PJ (1977): Gamma-vinyl GABA (4-amino-hex-5-enoic acid), a new selective irreversible inhibitor of GABA-T: Effects on brain GABA metabolism in mice. J Neurochem 29:787–802

    Article  Google Scholar 

  • Kalia M, Sullivan JM (1982): Brainstem projections of sensory and motor components of the vagus nerve in the rat. J Comp Neurol 211:248–264

    Article  Google Scholar 

  • Kalia MP (1981): Location of aortic and carotid baroreceptor and chemoreceptor primary afferents in the brain stem. In: Central Nervous System Mechanisms in Hypertension, Buckley JP, Ferrario CM, eds. New York: Raven Pre

    Google Scholar 

  • Kerr DI, Ong J, Johnston GAR, Abbenante J, Prager RH (1988): 2-hydroxy-saclofen: an improved antagonist at central and peripheral GABAB receptors. Neurosci Lett 92:92–96

    Article  Google Scholar 

  • Kerr DI, Ong J, Prager RH, Gynther BD, Curtis DR (1987): Phaclofen: A peripheral and central baclofen antagonist. Brain Res 405:150–154

    Article  Google Scholar 

  • Kihara M, Kubo T, Misu Y (1987): Potassium induced release of endogenous glutamate, gamma-aminobutyric acid (GABA) and glycine from the caudal dorsomedial medulla of the rat. J Pharmacobio-Dyn 10:727–729

    Article  Google Scholar 

  • Kihara M, Misu Y, Kubo T (1989): Release by electrical stimulation of endogenous glutamate, gamma-aminobutyric acid, and other amino acids from slices of the rat medulla oblongata. J Neurochem 52:261–267

    Article  Google Scholar 

  • Krieger EM (1964): Neurogenic hypertension in the rat. Circ Res 15:511–521

    Google Scholar 

  • Krieger EM (1984): Neurogenic hypertension in the rat. In: Handbook of Hypertension. Experimental and Genetic Models of Hypertension, De Jong W, ed. New York: Elsevier Publishers

    Google Scholar 

  • Krogsgaard-Larsen P (1980): Inhibitors of the GABA uptake systems. Mol Cell Biochem 31:105–121

    Article  Google Scholar 

  • Krogsgaard-Larsen P, Johnston GAR (1975): Inhibition of GABA uptake in rat brain slices by nipecotic acid, various isoxazoles and related compounds. J Neurochem 25:797–802

    Article  Google Scholar 

  • Kubo T, Kihara M (1987): Evidence for the presence of GABAergic and glycine-like systems responsible for cardiovascular control in the nucleus tractus solitarii of the rat. Neurosci Lett 74:331–336

    Article  Google Scholar 

  • Kubo T, Kihara M (1988): Evidence for Îł-aminobutyric acid receptor-mediated modulation of the aortic baroreceptor reflex in the nucleus tractus solitarii of the rat. Neurosci Lett 89:156–160

    Article  Google Scholar 

  • Kubo T, Kihara M, Hata H, Misu Y (1987): Cardiovascular effects in rats of alpha1 and alpha2 adrenergic agents injected into the nucleus tractus solitarii. Naunyn-Schmiedeberg’s Arch Pharmacol 335:274–277

    Article  Google Scholar 

  • Lasiter PS, Kachele DL (1988): Organization of GABA and GABA-transaminase containing neurons in the gustatory zone of the nucleus of the solitary tract. Brain Res Bull 21:623–636

    Article  Google Scholar 

  • Leone C, Gordon FJ (1989): Is L-glutamate a neurotransmitter of baroreceptor information in the nucleus tractus solitarius? J Pharmacol Exp Ther 250:953–962

    Google Scholar 

  • Leslie RA (1985): Neuroactive substances in the dorsal vagal complex of the medulla oblongata: Nucleus of the tractus solitarius, area postrema, and dorsal motor nucleus of the vagus. Neurochem Int 7:191–211

    Article  Google Scholar 

  • Lev-Tov A, Meyers DER, Burke RE (1988): Activation of type B Îł-aminobutyric acid receptors in the intact mammalian spinal cord mimics the effects of reduced presynaptic Ca2+ influx. Proc Natl Acad Sci 85:5330–5334

    Article  Google Scholar 

  • Livingston CA, Berger AJ (1989): Immunocytochemical localization of GABA in neurons projecting to the ventrolateral nucleus of the solitary tract. Brain Res 494:143–150

    Article  Google Scholar 

  • Lloyd KG (1986): GABA receptor binding. In: Neuromethods: Receptor Binding, Boulton AA, Baker GB, Hrdina PD, eds. Clifton NJ: Humana Pre

    Google Scholar 

  • Loscher W (1980a): A comparative study of the pharmacology of inhibitors of GABA-metabolism.Naunyn-Schmiedeberg’s Arch Pharmacol 315:119–128

    Article  Google Scholar 

  • Löscher W (1980b): Effects of inhibitors of GABA transaminase on the synthesis, binding, uptake, and metabolism of GABA. J Neurochem 34:1603–1608

    Article  Google Scholar 

  • Maley B, Newton BW (1985): Immunohistochemistry of gamma-aminobutyric acid in the cat nucleus tractus solitarius. Brain Res 330:364–368

    Article  Google Scholar 

  • Maqbool A, Batten TFC, McWilliam PN (1991): Ultrastructural relationships between GABAergic terminals and cardiac vagal preganglionic motoneurons and vagal afferents in the cat: A combined HRP tracing and immunogold labelling study. Eur J Neurosci 3:501–513

    Article  Google Scholar 

  • McGeer PL, Eccles JC, McGeer EM (1987): Molecular Neurobiology of the Mammalian Brain. New York: Plenum Press

    Book  Google Scholar 

  • McWilliam PN, Shepheard SL (1988): A GABA-mediated inhibition of neurones in the nucleus tractus solitarius of the cat that respond to electrical stimulation of the carotid sinus nerve. Neurosci Leu 94:321–326

    Article  Google Scholar 

  • Meeley MP, Ruggiero DA, Ishitsuka T, Reis DJ (1985): Intrinsic gamma-aminobutyric acid neurons in the nucleus of the solitary tract and the rostral ventrolateral medulla of the rat: An immunocytochemical and biochemical study. Neurosci Lett 58:83–89

    Article  Google Scholar 

  • Meeley MP, Underwood MD, Talman WT, Reis DJ (1989): Content and in vitro release of endogenous amino acids in the area of the solitary tract of the rat. J Neurochem 53:1807–1817

    Article  Google Scholar 

  • Metcalf BW (1979): Inhibitors of GABA metabolism. Biochem Pharmacol 28:1705–1712

    Article  Google Scholar 

  • Mifflin SW, Felder RB (1988): An intracellular study of time-dependent cardiovascular interactions in nucleus tractus solitarius. J Neurophysiol 59:1798–1813

    Google Scholar 

  • Mifflin SW, Felder RB (1990): Synaptic mechanisms regulating cardiovascular afferent inputs to solitary tract nucleus. Am J Physiol 259:H653–H661

    Google Scholar 

  • Miles R (1986): Frequency dependence of synaptic transmission in nucleus of the solitary tract in vitro. J Neurophysiol 55:1076–1090

    Google Scholar 

  • Millhorn DE, Hökfelt T, Seroogy K, Verhofstad AA (1988): Extent of colocalization of serotonin and GABA in neurons of the ventral medulla oblongata in rat. Brain Res 461:169–174

    Article  Google Scholar 

  • Mugnani E, Oertel WH (1985): An atlas of GABAergic neurons and terminals in the rat CNS. In: Handbook of Chemical Neuroanatomy, Bjorklund A, Hökfelt T, eds. Amsterdam: Elsevi

    Google Scholar 

  • Olpe H-R, Karlsson G, Pozza MF, et al. (1990): CGP 35348: A centrally active blocker of GABAB receptors. Eur J Pharmacol 187:27–38

    Article  Google Scholar 

  • Olsen RW, Leeb-Lundberg F (1981): Convulsant and anticonvulsant drug binding sites related to GABA-regulated chloride ion channels. Adv Biochem Psychopharmacol 26:93–102

    Google Scholar 

  • Paton JFR, Silva-Carvalho L, Thompson CS, Spyer KM (1990): Nucleus tractus solitarius as mediator of evoked parabrachial cardiovascular responses in the decerebrate rabbit. J Phvsiol 428:693–705

    Google Scholar 

  • Paton JFR, Spyer KM (1990): Brain stem regions mediating the cardiovascular responses elicited from the posterior cerebellar cortex in the rabbit. J Physiol 427:533–552

    Google Scholar 

  • Peng Y-Y, Frank E (1989): Activation of GABAB receptors causes presynaptic inhibition at synapses between muscle spindle afferents and motoneurons in the spinal cord of bullfrogs. J Neurosci 9.1502–1515

    Google Scholar 

  • Persson P (1981): A hypertensive response to baclofen in the nucleus tractus solitarii in rats. J Pharm Pharmacol 33:226–231

    Article  Google Scholar 

  • Pickel VM, Chan J, Massari VJ (1989a): Neuropeptide Y-like immunoreactivity in neurons of the solitary tract nuclei: vesicular localization and synaptic input from GABAergic terminals. Brain Res 476:265–278

    Article  Google Scholar 

  • Pickel VM, Chan J, Milner TA (1989b): Cellular substrates for interactions between neurons containing phenylethanolamine Af-methyltransferase and GABA in the nuclei of the solitary tracts. J Comp Neurol 286:243–259

    Google Scholar 

  • Rapoport SI (1976): Blood-Brain Barrier in Physiology and Medicine. New York: Raven Press

    Google Scholar 

  • Schaffar N, Kessler JP, Bosler O, Jean A (1988): Central serotonergic projections to the nucleus tractus solitarii: Evidence from a double labeling study in the rat. Neuroscience 26:951–958

    Article  Google Scholar 

  • Scherer RW, Ferkany JW, Enna SJ (1988): Evidence for pharmacologically distinct subsets of GABAB receptors. Brain Res Bull 21:439–443

    Article  Google Scholar 

  • Schreihofer AM, Sved AF (1992): Role of nucleus tractus solitarius in the tonic maintenance of arterial pressure after chronic sino-aortic denervation. Am J Physiol In press

    Google Scholar 

  • Siemers ER, Rea MA, Felten DL, Aprison MH (1982): Distribution and uptake of glycine, glutmate and gamma-aminobutyric acid in the vagal nuclei and eight other regions of the rat medulla oblongata. Neurochem Res 7:455–468

    Article  Google Scholar 

  • Simon JR, DiMicco SK, Aprison MH (1985): Neurochemical studies of the nucleus of the solitary tract, dorsal motor nucleus of the vagus and the hypoglossal nucleus in rat: Topographical distribution of glutamate uptake, GABA uptake and glutamic acid decarboxylase activity. Brain Res Bull 14:49–53

    Article  Google Scholar 

  • Singh R, Ticku MK (1985): Comparison of [3H]baclofen binding to GABA-B receptors in spontaneously hypertensive and normotensive rats. Brain Res 358:1–9

    Article  Google Scholar 

  • Spyer KM (1990): The central nervous organization of reflex circulatory control. In: Central Regulation of Autonomic Functions, Loewy AD, Spyer KM, eds. New York: Oxford University Press

    Google Scholar 

  • Sved AF (1990): Evidence that GABA acts on presynaptic GABAB receptors in the NTS to block the baroreceptor reflex. FASEB J 4:A1066

    Google Scholar 

  • Sved AF, Imaizumi T, Talman WT, Reis DJ (1985): Vasopressin contributes to hypertension caused by nucleus tractus solitarius lesions. Hypertension 7:262–267

    Google Scholar 

  • Sved AF, Salter JN (1990): Glutamate release in the nucleus tractus solitarius is not affected by baroreceptor afferents. Neurosci Abstr 16:218

    Google Scholar 

  • Sved AF, Sved JC(1990): Endogenous GABA acts on GABAB receptors in nucleus tractus solitarius to increase blood pressure. Brain Res 526:235–240

    Article  Google Scholar 

  • Sved AF, Tsukamoto K, Schreihofer AM (1992): Stimulation of alpha2-adrenergic receptors in nucleus tractus solitarius is required for the baroreceptor reflex. Brain Res 576:297–303

    Article  Google Scholar 

  • Sved AF, Tsukamoto K (1992): Tonic stimulation of GABAB receptors in the nucleus tractus solitarius modulates the baroreceptor reflex. Brain Res

    Google Scholar 

  • Sved JC, Sved AF (1989): Cardiovascular responses elicited by gamma-aminobutyric acid in the nucleus tractus solitarius: evidence for action at the GABAB receptor. Neuropharmacology 28:515–520

    Article  Google Scholar 

  • Talman WT (1989): Kynurenic acid microinjected into the nucleus tractus solitarius of rat blocks the arterial baroreflex but not responses to glutamate. Neurosci Lett 102:247–252

    Article  Google Scholar 

  • Talman WT, Granata AR, Reis DJ (1984): Glutamatergic mechanisms in the nucleus tractus solitarius in blood pressure control. Fed Proc 43:39–44

    Google Scholar 

  • Talman WT, Perrone MH, Reis DJ (1980): Evidence for L-glutamate as the neurotransmitter of baroreceptor afferent nerve fibers. Science 209:813–815

    Article  Google Scholar 

  • Talman WT, Perrone MH, Reis DJ (1981): Acute hypertension after the local injection of kainic acid into the nucleus tractus solitarii of rats. Circ Res 48:292–298

    Google Scholar 

  • Thor KB, Helke CJ (1987): Serotonin-and substance P-containing projections to the nucleus tractus solitarii of the rat. J Comp Neurol 265:275–293

    Article  Google Scholar 

  • Vizi ES, Labos E (1991): Non-synaptic interactions at presynaptic level. Prog Neurobiol 37:145–163

    Article  Google Scholar 

  • Wibble JH Jr, Luft FC, DiMicco JA (1988): Hypothalamic GABA suppresses sympathetic outflow to the cardiovascular system. Am J Physiol 254:R680–R687

    Google Scholar 

  • Williford DJ, Hamilton BL, Dias Souza J, Williams TP, DiMicco JA, Gillis RA (1980): Central nervous system mechanisms involving GABA influence arterial pressure and heart rate in the cat. Circ Res 47:80–88

    Google Scholar 

  • Zandberg P, Palkovits M, De Jong W (1978): Effect of various lesions in the nucleus tractus solitarii of the rat on blood pressure, heart rate and cardiovascular reflex responses. Clin Exp Hypertens 1:355–379

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Boston

About this chapter

Cite this chapter

Sved, A.F., Tsukamoto, K., Sved, J.C. (1992). GABAB Receptors in the Nucleus Tractus Solitarius in Cardiovascular Regulation. In: Kunos, G., Ciriello, J. (eds) Central Neural Mechanisms in Cardiovascular Regulation. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-9184-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9184-5_14

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-9186-9

  • Online ISBN: 978-1-4684-9184-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics