Skip to main content

Brain Stem GABA Pathways and the Regulation of Baroreflex Activity

  • Chapter

Abstract

Since the inhibitory neurotransmitter γ-aminobutyric acid (GABA) has been implicated in virtually all neuronal systems, it would be surprising if it were not also involved in the pathways responsible for maintaining and controlling blood pressure and heart rate. However, the exact role that it plays in cardiovascular control is still under intensive investigation and GABAergic inhibitory connections between cell groups are still being mapped anatomically and functionally. In addition, in recent years it has become apparent that GABA can act on at least two types of receptor (GABAA and GABAB), which are both capable of mediating pre- and postsynaptic inhibition but function via different ionic mechanisms. Agonists acting at the GABAA-receptor subtype cause inhibition by opening of Cl channels whereas agonists at the GABAB-receptor subtype cause postsynaptic inhibition via a K+-conductance (Newberry and Nicoll, 1985) and presynaptic inhibition of transmitter release probably through a reduction in Ca2+-conduc-tance (see Huston et al., 1990).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal SK, Gelsema AJ, Calaresu FR (1990): Inhibition of rostral VLM by baroreceptor activation is relayed through caudal VLM. Am J Physiol 288:R1271–R1278

    Google Scholar 

  • Alsip NL, Simon JR, Fohl LD, DiMicco JA (1984): Cardiovascular effects of 3-mercap-topropionic acid and levels of GAB A in regions of the brain of guinea-pigs. Neuropharmacology 23:349–357.

    Article  Google Scholar 

  • Antonaccio MJ, Taylor DG (1977): Involvement of central GABA receptors in the regulation of blood pressure and heart rate of anesthetized rats. Eur J Pharmacol 46:283–285

    Article  Google Scholar 

  • Barman SM, Gebber GL (1979): Picrotoxin-and bicuculline-sensitive inhibition of cardiac vagal reflexes. J Pharmacol Exp Ther 209:67–72.

    Google Scholar 

  • Bennett JA, McWilliam PN. Shepheard SL (1987): A gamma-aminobutyric-acid-mediated inhibition of neurones in the nucleus tractus solitarius of the cat. J Physiol (Lond)392:417–430

    Google Scholar 

  • Berieter DA, Gann DS (1989): Substance P and GABAergic effects on adrenal and autonomic function evoked by microinjections into trigeminal nucleus caudalis in the cat. Brain Res 490:307–309

    Article  Google Scholar 

  • Blessing WW (1990): Distribution of glutamate decarboxylase-containing neurons in rabbit medulla oblongata with attention to intramedullary and spinal projections. Neuro-science37:171–185

    Google Scholar 

  • Blessing WW, Oertel WH, Willoughby O (1984): Glutamic acid decarboxylase immuno-reactivity is present in perikarya of neurons in the nucleus tractus solitarius of the rat. Brain Res 322:346–350

    Article  Google Scholar 

  • Bousquet P, Feldman J, Bloch R, Schwartz J (1982): Evidence for a neuromodulatory role of GABA at the first synapse of the baroreceptor reflex pathway. Effects of GABA derivatives injected into the NTS. Naunyn Schmiedeberg’s Arch Pharmacol 319:168–171

    Article  Google Scholar 

  • Brooks PA, Bradley AJ, Glaum SR, Miller RJ (1991): Activation of GABAB receptors causes pre-and postsynaptic effects in the rat nucleus tractus solitarius. J Physiol 438:79P

    Google Scholar 

  • Brooks PA, Glawn SR, Miller RJ, Spyer KM (1992): The actions of baelofen on neurones and synaptic transmission in the nucleus tractus solitarius of the rat in vitro. J Physiol, in press

    Google Scholar 

  • Brown DL, Guyenet PG (1985): Electrophysiological study of cardiovascular neurons in the rostral ventrolateral medulla. Cire Res 56:359–369.

    Google Scholar 

  • Catelli JM, Giakas WJ, Sved AF (1987): GABAergic mechanisms in nucleus tractus solitarius alter blood pressure and vasopressin release. Brain Res 403:279–289.

    Article  Google Scholar 

  • Catelli JM, Sved AF (1988): Enhanced pressor response to GABA in the nucleus tractus solitarii of the spontaneously hypertensive rat. Eur J Pharmacol 151:243–248.

    Article  Google Scholar 

  • Champagnat J, Denavit-Daubie M, Grant K, Shen KF (1986): Organization of synaptic transmission in the mammalian solitary complex studies in vitro. J Physiol 381:551–573

    Google Scholar 

  • Champagnat J, Siggins GR, Koda LY, Denavit-Saubie M(1985): Synaptic responses of neurons of the nucleus tractus solitarius in vitro. Brain Res 325:49–56

    Article  Google Scholar 

  • Cochrane KL, Buchholz RA, Hubbard JW, Keeton TK, Nathan MA (1988): Hypotensive effects of lesions of the rostral ventrolateral medulla in rats are anesthetic dependent. J Auton NervSys 22:181–187.

    Article  Google Scholar 

  • Cochrane KL, Nathan MA (1989): Normotension in conscious rats after placement of lesions in the rostral ventrolateral medulla. J Auton Nerv Sys 26:199–211.

    Article  Google Scholar 

  • Coote JH, Hilton SM, Perez-Gonzalez JF (1979): Inhibition of the baroreceptor reflex on stimulation of brainstem defence area. J Physiol 288:549–560.

    Google Scholar 

  • Dampney RA, Blessing WW, Tan E(1988): Origin of tonic GABAergic inputs to vasopressor neurons in the subretrofacial nucleus of the rabbit. J Auton Nerv Sys 24:227–239

    Article  Google Scholar 

  • DiMicco JL, Gale K, Hamilton B, Gillis RA (1979): GABA receptor control of parasympathetic outflow to the heart. Characterization and brainstem location. Science 204:1106–1109

    Article  Google Scholar 

  • Donoghue S, Felder RB, Gilbey MP, Jordan D, Spyer KM (1985): Post-synaptic activity evoked in the nucleus tractus solitarius by carotid sinus and aortic nerve afferents in the cat. J Physiol 360:261–273.

    Google Scholar 

  • Florentino A, Varga K, Kunos G (1990): Mechanism of the cardiovascular effects of GABA receptor activation in the nucleus tractus solitarii of the rat. Brain Res 535:264–270

    Article  Google Scholar 

  • Gale K, Hamilton BL, Brown SC, Norman WP, Souza JD, Gillis RA (1980): GABA and specific GABA binding sites in brain nuclei associated with vagal outflow. Brain Res Bull 5 (Suppl 2):325–328.

    Article  Google Scholar 

  • Gatti PJ, DaSilva AM, Gillis RA (1987): Cardiorespiratory effects produced by injecting drugs that affect GABA receptors into nuclei associated with the ventral surface of the medulla. Neuropharmacology 26:423–431.

    Article  Google Scholar 

  • Gebber GL (1990): Central determinants of sympathetic nerve discharge. In: Central Regulation of Autonomic Functions, Loewy AD, Spyer KM, eds. New York Oxford University Press

    Google Scholar 

  • Gillis RA, DiMicco JA, Williford DJ, Hamilton BL, Gale KN (1980): Importance of CNS GABAergic mechanisms in the regulation of cardiovascular function. Brain Res Bull 5 (Suppl 2):303–315

    Article  Google Scholar 

  • Glaum SR, Brooks PA, Murphy SM, Miller RJ (1991): Activation of 5-HT3 receptors causes pre-and postsynaptic effects in the nucleus tractus solitarius (NTS) of the rat in vitro. J Physiol 438:253.

    Google Scholar 

  • Guyenet PG (1990): Role of the ventral medulla oblongata in blood pressure regulation. In: Central Regulation of Autonomic Functions, Loewy AD, Spyer KM, eds. New York: Oxford University Pres

    Google Scholar 

  • Guyenet PF, Brown DL (1986): Nucleus paragigantocellularis lateralis and lumbar sympathetic nerve discharge in the rat. Am J Physiol 250:R1081–R1094.

    Google Scholar 

  • Guyenet PG, Darnall RA, Riley TA (1990): Rostral ventrolateral medulla and sympatho-respiratory integration in rats. Am J Physiol 259:R1063–R1074.

    Google Scholar 

  • Guyenet PG, Sun M-K, Brown DL (1987): Role of GABA and excitatory amino acids in medullary baroreceptor pathways. In: Organisation of the Autonomic Nervous System: Central and Peripheral Mechanisms, Ciriello J, Calaresu FR, Renaud LP, Polosa C, eds. N w York; Alan R. Lis

    Google Scholar 

  • Humphrey SJ, McCall RB (1985): Evidence for gamma-aminobutyric acid mediation of the sympathetic nerve inhibitory response to vagal afferent stimulation. J Pharmacol Exp Ther 234:288–297

    Google Scholar 

  • Huston E, Scott RH, Dolphin AC (1990): A comparison of the effect of calcium chanel ligands and GABAB agonists and antagonists on transmitter release and somatic calcium currents in cultured neurones. Neuroscience 38:721–729

    Article  Google Scholar 

  • Hwang BH, Wu JY (1984): Ultrastructural studies on catecholaminergic terminals and GABAergic neurons in nucleus tractus solitarius of the rat medulla oblongata. Brain Res 302:57–67

    Article  Google Scholar 

  • Izzo PN, Sykes RM, Spyer KM (1989): Immunocytochemical examination of GABA-containing structures in the cat nucleus tractus solitarius. Neurosci Letts 36(Suppl):S99

    Google Scholar 

  • Izzo PN, Sykes RM, Spyer KM (1992): γ-amino butyric acid immunoreactive structures in the nucleus tractus solitarius: A light and electron microscopic study. Brain Res, in press

    Google Scholar 

  • Jordan D, Gilbey MP, Richter DW, Spyer KM, Wood LM (1985): Respiratory-vagal interactions in the nucleus ambiguus of the cat. In: Neurogenesis of Central Respiratory Control, Bianchi AL, Denavit-Saubie M, eds. Lancaster: MTP Press,Ltd

    Google Scholar 

  • Jordan D, Mifflin SW, Spyer KM (1988): Hypothalamic inhibition of neurones in the nucleus tractus solitarius of the cat is GABA mediated. J Physiol 399:389–404.

    Google Scholar 

  • Jordan D, Spyer KM (1986): Brainstem integration of cardiovascular and pulmonary afferent activity. Prog Brain Res 67:295–313.

    Article  Google Scholar 

  • Kidd C, Bennet JA, McWilliam PN (1987): GABA and cardiovascular reflexes. In: Studies in Neurosvience: Neurobiology of the Cardiovascular System, Taylor EW, ed. Manchester: Manchester University Press.

    Google Scholar 

  • Kihara M, Kubo T (1988): Cardiovascular effects of GABA system activating drugs injected into the caudal ventrolateral medulla of the rat. Arch Int Pharmacodyn Ther 295:67–79

    Google Scholar 

  • Kubo T, Kihara M (1987): Evidence for the presence of GABAergic and glycine-like systems responsible for cardiovascular control in the nucleus tractus solitarii of the rat. Neurosci Lett 74:331–336

    Article  Google Scholar 

  • Lalley PM (1980): Inhibition of depressor cardiovascular reflexes by a derivative of-aminobutyric acid (GABA) and by general anaesthetics with suspected GABA-mimetic affects. J Pharmacol Exp Ther 215:418–425.

    Google Scholar 

  • Lipski J, Waldvogel HJ, Pilowski P, Jiang C (1990): GABA-immunoreactive boutons make synapses with inspiratory neurons of the dorsal respiratory group. Brain Res 529:309–314

    Article  Google Scholar 

  • Lovick TA (1988): GABA-mediated inhibition in nucleus paragigantocellularis lateralis in the cat. Neurosci Lett 92:182–186

    Article  Google Scholar 

  • Maley B, Newton BW (1985): Immunohistochemistry of γ-aminobutyric acid in the cat nucleus tractus solitarius. Brain Res 330:364–368

    Article  Google Scholar 

  • Maqbool A, Batten TFC, Mcwilliam PN (1991): Ultrastructural relationships between GABAergic terminals and cardiac vagal preganglionic motoneurons and vagal afferents in the cat: A combined HRP tracing and immunogold labelling study. Eur J Neurosci 3:501–513

    Article  Google Scholar 

  • McWilliam PN, Shepheard SL (1988): A GABA-mediated inhibition of neurones in the nucleus tractus solitarius of the cat that respond to electrical stimulation of the carotid sinus nerve. Neurosci Lett 94:321–326

    Article  Google Scholar 

  • Meeley MP, Ruggiero DA, Ishitsuka T, Reis DJ (1985): Intrinsic gamma-amino-butyric acid neurons in the nucleus of the solitary tract and the rostral ventrolateral medulla of the rat: An immunocytochemical and biochemical study. Neurosci Lett 58:83–89

    Article  Google Scholar 

  • Mifflin SW, Felder RB (1988): An intracellular study of time-dependent cardiovascular afferent interactions in nucleus tractus solitarius. J Neurophysiol 59:1798–1813

    Google Scholar 

  • Mifflin SW, Spyer KM, Withington-Wray DJ (1988): Baroreceptor inputs to the nucleus tractus solitarius in the cat: Postsynaptic actions and the influence of respiration. J Physiol 399:349–367

    Google Scholar 

  • Miles R (1986): Frequency dependence of synaptic transmission in nucleus of the solitary tract in vitro. J Neurophysiol 55:1076–1090

    Google Scholar 

  • Morrison SF, Milner TA, Pickel VM, Reis DJ (1988): Reticulospinal vasomotor neurons of the rat rostral ventrolateral medulla (RVL): Relationship to sympathetic nerve activity and the Cl adrenergic cell group. J Neurosci 8:1286–1301.

    Google Scholar 

  • Nakagawa T, Wakamori M, Shirasaki T, Nakaye T, Akaike N (1991): gamma-Aminobu-tyric acid-induced response in acutely isolated nucleus solitarii neurons of the rat. Am J Physiol 260:C745–C749

    Google Scholar 

  • Newberry NR, Nicoll RA (1985): Comparison of the action of baclofen with γ-aminobu-tyric acid on rat hippocampal pyramidal cells in vitro. J Physiol 360:161–185

    Google Scholar 

  • Nosaka S, Nakase N, Murata K (1989): Somatosensory and hypothalamic inhibition of baroreflex vagal bradycardia in rats. Pflügers Arch 413:656–666.

    Google Scholar 

  • Persson B (1981): A hypertensive response to baclofen in the nucleus tractus solitarii in rats. J Pharm Pharmacol 33:226–231.

    Article  Google Scholar 

  • Pickel VM, Chan J, Milner TA (1989): Cellular substrates for interactions between neurons containing phenylethanolamine N-methyltransferase and GABA in the nuclei of the solitary tracts. J Comp Neurol 286:243–259.

    Article  Google Scholar 

  • Ross CA, Ruggiero DA, Park DH, et al. (1984): Tonic vasomotor control by the rostral ventrolateral medulla: Effect of electrical or chemical stimulation of the area containing Cl adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J Neurosci 4:474–494

    Google Scholar 

  • Ruggiero DA, Meeley MP, Anwar M, Reis DJ (1985): Newly identified GABAergic neurons in regions of the ventrolateral medulla which regulate blood pressure. Brain Res 339:171–177

    Article  Google Scholar 

  • Siemers ER, Rea MA, Felten DL, Aprison MH (1982): Distribution and uptake of glycine, glutamate and gamma-aminobutyric acid in the vagal nuclei and eight other regions of the rat medulla oblongata. Neurochem Res 7:455–468

    Article  Google Scholar 

  • Simon JR, DiMicco SK, Aprison MH (1985): Neurochemical studies of the nucleus of the solitary tract, dorsal motor nucleus of the vagus and the hypoglossal nucleus in rat: Topographical distribution of glutamate uptake, GABA uptake and glutamic acid decarboxylase activity. Brain Res Bull 14:49–53

    Article  Google Scholar 

  • Spyer KM (1981): Neural organisation and control of the baroreceptor reflex. Rev Physiol Biochem Pharmacol 99:23–124

    Article  Google Scholar 

  • Spyer KM (1990): The central nervous organization of reflex circulatory control. In: Central Regulation of Autonomic Functions, Loewy AD, Spyer KM, eds. New York: Oxford University Pre

    Google Scholar 

  • Stuesse SL (1982): Origins of cardiac vagal preganglionic fibers; a retrograde transport study. Brain Res 236:15–25

    Article  Google Scholar 

  • Such G, Jancso G(1988): GABA antagonists potentiate the cardioinhibitory reflex induced by capsaicin in the cat. Acta Physiol Hung 72:181–189

    Google Scholar 

  • Sun M-K, Guyenet PG (1985): GABA-mediated inhibition of reticulospinal neurons. Am J Physiol 249:R672–R680

    Google Scholar 

  • Sun M-K, Guyenet PG (1987): Arterial baroreceptor and vagal inputs to sympathoexcita-tory neurons in rat medulla. Am J Physiol 252:R699–R709

    Google Scholar 

  • Sun M-K, Spyer KM (1991): GABA-mediated inhibition of medullary vasomotor neurones by area postrema stimulation in rats. J Physiol 436:669–684

    Google Scholar 

  • Sved AF, Sved JC (1990): Endogenous GABA acts on GABAB receptors in nucleus tractus solitarius to increase blood pressure. Brain Res 526:235–240

    Article  Google Scholar 

  • Urbanski RW, Sapru HN (1988): Putative neurotransmitters involved in medullary cardiovascular regulation. J Auton Nerv Sys 25:181–193

    Article  Google Scholar 

  • Varga K, Kunos G (1990): Ethanol inhibition of baroreflex bradycardia: Role of brainstem GABA receptors. Br J Pharmacol 101:773–775

    Google Scholar 

  • Wang QA, Li P (1988a): Inhibition of baroreflex following microinjection of GABA or morphine into the nucleus tractus solitarii in rabbits. J Auton Nerv Sys 25:165–172

    Article  Google Scholar 

  • Wang QA, Li P (1988b): A GABAergic mechanism in the inhibition of cardiac vagal reflexes. Brain Res 457:367–370

    Article  Google Scholar 

  • Willette RN, Barcas PP, Krieger AJ, Sapru HN (1984): Endogenous GABAergic mechanisms in the medulla and the regulation of blood pressure. J Pharmacol Exp Ther 230:34–39

    Google Scholar 

  • Willette RN, Krieger AJ, Barcas PP, Sapru HN (1983): Medullary γ-aminobutyric acid receptors and the regulation of blood pressure. J Pharmacol Exp Ther 226:893–899

    Google Scholar 

  • Williford DJ, Hamilton BL. Gillis RA (1980): Evidence that a GABAergic mechanism at nucleus ambiguus influences reflex-induced vagal activity. Brain Res 193:584–588

    Article  Google Scholar 

  • Yamada K, McAllen RM, Loewy AD (1984): GABA antagonists applied to the ventral surface of the medulla oblongata block the baroreceptor reflex. Brain Res 297:175–180

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Boston

About this chapter

Cite this chapter

Brooks, P.A., Izzo, P.N., Spyer, K.M. (1992). Brain Stem GABA Pathways and the Regulation of Baroreflex Activity. In: Kunos, G., Ciriello, J. (eds) Central Neural Mechanisms in Cardiovascular Regulation. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-9184-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9184-5_13

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-9186-9

  • Online ISBN: 978-1-4684-9184-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics