Skip to main content

Dielectric and High Pressure Studies of Liquid Crystals

  • Chapter
Book cover Phase Transitions in Liquid Crystals

Part of the book series: NATO ASI Series ((NSSB,volume 290))

Abstract

Dielectric studies probe the response of molecules to the application of an external electric field. In liquid crystals, the situation is quite complex: The materials exhibit anisotropy of dielectric permittivity while maintaining their fluidity. Also, the frequency response of the dielectric constants depends strongly on the relative direction of the electric field with respect to the long axis of the molecules. An investigation of the static permittivities gives important information on the dielectric anisotropy in relation to the molecular structure and dipole-moment. On the other hand, a study of the dielectric dispersion enables us to understand the different relaxation processes associated with the dipolar molecules of liquid crystals. However the interpretation of the dielectric dispersion data is difficult in view of the fact that the effects due to the nematic potential and viscosity are difficult to separate. Also, the activation energy calculated by the Arrehnius plots of the dielectric dispersion frequencies appear to be strongly influenced by short range order effects. This is particularly so when the range of the liquid crystalline phase is narrow and it is somewhat difficult to define a unique activation energy for a given liquid crystalline phase. In the present chapter, we shall discuss the behavior of static dielectric permittivity for different types of liquid crystals composed of nonpolar, weakly polar and strongly polar molecules. We shall also discuss how dielectric properties enable us to probe the nature of dipole-dipole interactions in liquid crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Vertagen and W.H. de Jeu, in “Thermotropic Liquid Crystals”, Springer-Verlag, p. 190 (1988).

    Google Scholar 

  2. W.H. de Jeu, in “Physical Properties of Liquid Crystalline Materials”, Gordon and Breach, New York, (1980).

    Google Scholar 

  3. B.R. Ratna, M.S. Vijaya, R. Shashidhar and B.K. Sadashiva, Pramana Suppl. 1: 69 (1973).

    Google Scholar 

  4. D. Lippens, J.P. Parneix and J.P. Chapoton, J. de Physique, 38: 1665 (173).

    Google Scholar 

  5. G. Heppke, S. Pfeiffer, C. Nagabhushan and R. Shashidhar, Mol. Cryst. Liq. Cryst., 170: 89 (1989).

    Google Scholar 

  6. A. Gobl-Wernsch, F. Heppke and R. Kopf, Z. Naturforsch., 36a: 213 (1981).

    ADS  Google Scholar 

  7. J.W. Goodby, T.M. Leslie, P.E. Cladis, and P.L. Finn in “Liquid Crystals and Ordered Fluids”, vol. 4, Gordon and Breach, New York, p. 203 (1982).

    Google Scholar 

  8. W. Maier and G. Meier, Z. Naturforsch., 16a: 262 (1961).

    ADS  Google Scholar 

  9. W. Maier and G. Meier, Z. Naturforsch., 16a: 470 (1961).

    ADS  Google Scholar 

  10. W. de Jeu in “Liquid Crystals”, Ed. L. Liebert, Solid State Phys. Suppl. 14, Academic Press, New York, p.109 (1978).

    Google Scholar 

  11. H. Kresse, Forschritte der Physik, 30: 507 (1982).

    Article  ADS  Google Scholar 

  12. N.V. Madhusudana and S. Chandrasekhar, Pramana Suppl. I, 225 (1973).

    Google Scholar 

  13. See, e.g.: P.S. Pershan, in “Structure of Liquid Crystal Phases”, World Scientific, p. 35 (1988).

    Book  Google Scholar 

  14. M.J. Bradshaw and E.P. Raynes, RSRE Newsletters, Res. Rev., 5: 26 (1981).

    Google Scholar 

  15. J. Thoen and G. Menu, Mol. Cryst. Liq. Cryst., 97: 163 (1983).

    Article  Google Scholar 

  16. C. Nagabhushana, B.R. Ratna, R. Shashidhar, S. Chandrasekhar, H. Kresse and W. Weissflog, Mol. Cryst. Liq. Cryst. Lett., 5: 87 (1988).

    Google Scholar 

  17. W. Weissflog, A. Wiegeleben, S. Diele and D. Demus, Cryst. Res. and Tech., 19: 583 (1984).

    Article  Google Scholar 

  18. H. Kresse, W. Weissflog, C. Nagabhushan and R. Shashidhar, Phys. Stat. Sol. (a), 101: K77 (1987).

    Article  ADS  Google Scholar 

  19. H. Kresse and P. Rubenstein, Phys. Stat. Sol. (a), 100: K83 (1987).

    Article  ADS  Google Scholar 

  20. S. Chandrasekhar, “Liquid Crystals”, Cambridge University Press (1977).

    Google Scholar 

  21. Hulett, G.A., Z. Phys. Chem., 28: 629 (1989).

    Google Scholar 

  22. For a review of high pressure studies till 1978, see S. Chandrasekhar and R. Shashidhar, Advances in Liquid Crystals, 4: 83 (1979).

    Google Scholar 

  23. A.S. Reshamwala and R. Shashidhar, J. Phys. E., 10: 183 (1977).

    Article  ADS  Google Scholar 

  24. A.N. Kalkura, R. Shashidhar and M.S. Urs, J. de Phys., 44: 51 (1983).

    Article  Google Scholar 

  25. S. Chandrasekhar and R. Shashidhar, Advances in Liquid Crystals, 4:83 (1979).

    Google Scholar 

  26. S. Chandrasekhar, S. Ramaseshan, A.S. Reshamwala, B.K. Sadashiva, R. Shashidhar and V. Surendranath, Pramana Suppl., 1:117 (1973).

    Article  Google Scholar 

  27. P.H. Keyes, H.T. Weston, and W.B. Daniels, Phys. Rev. Lett, 31: 628 (1973);

    Article  ADS  Google Scholar 

  28. R. Shashidhar and S. Chandrasekhar, J. Phys. (Paris), 36: C149 (1975).

    Article  Google Scholar 

  29. J. Chen and T.C. Lubensky, Phys. Rev., A14: 1202 (1976).

    ADS  Google Scholar 

  30. M. Hornreich, M. Luban, and S. Shtrikman, Phys. Rev. Lett, 35:1678 (1975).

    Article  ADS  Google Scholar 

  31. For the early work on NAC Systems, see e.g.: D.L. Johnson, J. Chim. Phys., 80:45 (1983).

    Google Scholar 

  32. D. Brisbin, D.L. Johnson, H. Fellner and M.E. Neubert, Phys. Lett, 50: 178 (1983); D.L. Johnson (private communication).

    Article  Google Scholar 

  33. R. Shashidhar, B.R. Ratna and S. Krishna Prasad, Phys. Rev. Lett, 53:2141 (1984).

    Article  ADS  Google Scholar 

  34. See, e.g.: Y. Shapira, in “Multicritical Phenomena”, Ed: R. Pynn and A. Skjeltrop, NATO Advanced Science Institute, Series B: Physics, Vol. 6 (Plenum), p. 129 (1986).

    Google Scholar 

  35. Cladis, P.E., Phys. Rev. Lett, 35:48 (1975).

    Article  ADS  Google Scholar 

  36. A.C. Anderson, W. Reese, and J.C. Wheatley, Phys. Rev., 130:1644 (1963).

    Article  ADS  Google Scholar 

  37. G. Riblet, K. Winzer, Solid State Commun., 9:1663 (1971).

    Article  ADS  Google Scholar 

  38. W.L. McMillan, Phys. Rev A4: 1238 (1971);

    Article  ADS  Google Scholar 

  39. P.G. de Gennes, Solid State Commun. 10: 753 (1972).

    Article  ADS  Google Scholar 

  40. E. Muller-Hartmann and J. Zittartz, Phys. Rev. Lett, 26:428 (1971).

    Article  ADS  Google Scholar 

  41. P.E. Cladis, R.K. Bogardus, W.B. Daniels and G.N. Taylor, Phys. Rev. Lett, 39: 720 (1977).

    Article  ADS  Google Scholar 

  42. For a recent review on materials exhibiting the Nre phase, see: Tinh, Nguyen Huu, J. Chim. Phys., 80: 83 (1983).

    Google Scholar 

  43. A.N. Kalkura, R. Shashidhar and M.S. Urs, J. Phys. (Paris), 44: 51 (1983).

    Article  Google Scholar 

  44. R. Shashidhar, S. Somasekhar and B.R. Ratna, Mol. Cryst Liq. Cryst, 133: 19 (1986).

    Article  Google Scholar 

  45. F. Hardouin, G. Sigaud, M.F. Archard and H. Gasparoux, Phys. Lett, 71A: 347 (1979).

    ADS  Google Scholar 

  46. Tinh, Nguyen Huu, F. Hardouin and C. Destrade, J. Phys. (Paris), 43:1127 (1982).

    Article  Google Scholar 

  47. R. Shashidhar, B.R. Ratna, V. Surendranath, V.N. Raja, S. Krishna Prasad and C. Nagabhushana, J. Phys. (Paris) Lett, 46: L445 (1985).

    Article  Google Scholar 

  48. F. Hardouin, A.M. Levelut, M.F. Achard and G. Siguad, J. Chim. Phys., 80: 53 (1983).

    Google Scholar 

  49. N.A. Clark, J. Phys (Paris), 40: C3345 (1979).

    Google Scholar 

  50. D.D. Klug and E. Whalley, J. Chem. Phys., 71: 1874 (1979).

    Article  ADS  Google Scholar 

  51. G.B. Kasting, K.J. Lushington and C.W. Garland, Phys. Rev., B22: 321 (1980).

    ADS  Google Scholar 

  52. P.S. Pershan and J. Prost, J. Phys. (Paris) Lett, 40: L27 (1979).

    Article  Google Scholar 

  53. R. Shashidhar, P.H. Keyes and W.B. Daniels, Mol. Cryst Liq. Cryst. Lett, 3: 169 (1986).

    Google Scholar 

  54. J.O. Indekeu and A.N. Berker, J. Phys. (Paris), 49: 353 (1988) and references cited therein.

    Article  Google Scholar 

  55. V.N. Raja, B.R. Ratna, R. Shashidhar, G. Heppke, Ch. Bahr, J.F. Marko, J.O. Indekeu and A.N. Berker, Phys. Rev. A, 39: 4341 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shashidhar, R. (1992). Dielectric and High Pressure Studies of Liquid Crystals. In: Martellucci, S., Chester, A.N. (eds) Phase Transitions in Liquid Crystals. NATO ASI Series, vol 290. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9151-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9151-7_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9153-1

  • Online ISBN: 978-1-4684-9151-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics