Skip to main content

Electrohydrodynamic (EHD) Flow in a Smectic a Liquid Crystal

  • Chapter
Phase Transitions in Liquid Crystals

Part of the book series: NATO ASI Series ((NSSB,volume 290))

  • 337 Accesses

Abstract

In EHDs one studies a liquid flow induced by an electric field. The liquid must contain a sufficient amount of ions which interacts with the external field. If the electric field is below a certain threshold the liquid remains stable, but conducts an ionic current. Above the threshold for EHD instability (EHDI), a liquid flow pattern develops. EHDIs are found in isotropic liquids as well as LCs. The book of Blinov1 is a good introduction to the field. Here, we consider the EHD flow in a Sm-A LC doped with ions. The material is confined between two glass plates which are coated with transparent electrode patterns. The plates are parallel to the x-y plane and the molecules are initially oriented with their long-axis perpendicular to the plates, i.e. parallel to the z-axis (homeotropic orientation). The appearance of a EHDI in a homeotropic Sm-A was predicted theoreticly in 19722 and investigated experimentally from 19773–8. The theory, is developed from the 1D Helfrich-Orsay model for a planar nematic LC (the molecular long-axis parallel to the plates limiting the sample), but takes into account some properties specific to the homeotropic Sm-A phase. The only velocity component in the 1D model is vz(x) which is modulated with a half period equal to the sample thickness. Experiments on Sm-A, report a circular flow in the x-y plane. It is obvious that the 1D model is insufficient to explain the observed flow pattern. It should be noted however, that in these experiments we are dealing with the situation occurring slightly above the threshold, whereas the theory predicts the situation only below the threshold. Firstly, we review in a simple way, some aspects of the Sm-A phase which are relevant for the observations presented in the experimental part. At the end we briefly discuss the observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.M. Blinov, “Electro-Optical and Magneto-Optical Properties of Liquid Crystals,” John Wiley & Sons, Chichester (1983).

    Google Scholar 

  2. Guerst and W.J.A. Goossens, Phys. Lett. 41A:396 (1972).

    Google Scholar 

  3. V. N. Chirkov, D. F. Aliev, G. M. Radzhabov, and A. Kh. Zeinally, Sov. Phys. JETP 47:5 (1978).

    Google Scholar 

  4. D. Coates, W.A. Crossland, J. H. Morrisy, and B Needham, J. Phys. D: Appl. Phys. 11:2025 (1978).

    Article  ADS  Google Scholar 

  5. V. N. Chirkov, D. F. Aliev, G. M. Radshabov, and A. Kh. Zeinally, Mol. Cryst. Liq. Cryst. 49:293 (1979).

    Article  Google Scholar 

  6. V. N. Chirkov, D. F. Aliev, and A. Kh. Zeinally, SovJPhys.Crystallogr. 26:1 (1979).

    Google Scholar 

  7. A. A. Razumov and E. A. Kirsanov, Sov.Phys. Tech. Phys. 27:5 (1982).

    Google Scholar 

  8. P.-A. V. Kazlauskas, L. S. Klenevskis, and V. V. Skinderis, Sov.Phys. Tech. Phys. 28:9 (1983).

    Google Scholar 

  9. E. Dubois-Violette, P.G. de Gennes and OParodi, J. Physique 32:305 (1971).

    Article  Google Scholar 

  10. P.G De Gennes, Phys. Fluids 17:1645 (1974).

    Article  ADS  MATH  Google Scholar 

  11. R. Ribotta and G. Durand, J. Physique 38:179 (1977).

    Article  Google Scholar 

  12. M. Kleman, “Points, Lines and Walls. In liquid crystals, magnetic systems and various ordered media”, John Wiley & Sons, Chichester (1983).

    Google Scholar 

  13. Ch. S. Rosenblatt, R. Pindak, N. A. Clark and R. B. Meyer, J. Physique 38:1105 (1977).

    Article  Google Scholar 

  14. L. M. Blinov, A. N. Trufanov, V. G. Chigrinov and M. I. Barnik, Mol. Cryst. Liq. Cryst. 74:1 (1981).

    Article  Google Scholar 

  15. L. M. Blinov, M. I. Barnik, V. T. Lazareva and A. N. Trufanov, J. Physique, 40 C3:263 (1979).

    ADS  Google Scholar 

  16. W. Helfrich, J. of Chem. Phys. 51:4092 (1969).

    Article  ADS  Google Scholar 

  17. F. Scudieri, A. Ferrari and E. Gunduz, J. Physique 40:C3–90 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Skjetne, E., Samseth, J., Jackson, A. (1992). Electrohydrodynamic (EHD) Flow in a Smectic a Liquid Crystal. In: Martellucci, S., Chester, A.N. (eds) Phase Transitions in Liquid Crystals. NATO ASI Series, vol 290. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9151-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9151-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9153-1

  • Online ISBN: 978-1-4684-9151-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics