Skip to main content

Nonlinear Differential Equations in Physics and Their Geometrical Integrability Properties

  • Chapter
Differential Geometric Methods in Theoretical Physics

Part of the book series: NATO ASI Series ((NSSB,volume 245))

  • 707 Accesses

Abstract

The attempt of this line of research is to try to treat Yang-Mills, and gravitational fields as nonlinear systems, and try to see how much they possess the geometrical integrability properties that have been the guiding force in many two-dimension nonlinear systems. Though the study so far has been quite formal and mathematical, the ultimate goal we have in mind is for particle physics: to solve the full Yang Mills and gravitational fields, and to formulate new ways to quantize the fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chau, L.-L., “Linear Systems and Conservation Laws of Gravitational Fields in Four Plus Extended Superspace”, Phys. Lett. B202 (1988) 238.

    MathSciNet  ADS  Google Scholar 

  2. Chau, L.-L. and Lim, C.-S., Phys. Rev. Lett. 56, 294 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  3. Chau, L.-L. and Milewski, B., “Light-Like Integrability and Supergravity Equations of Motion in D = 10, N = 1 Superspace”, UCD-87–05-R*; and Chau L.-L. and Lim, C.-S. to appear in Mod. Phys A. 1989.

    Google Scholar 

  4. Chau, L.L. and B. Milewski “Linear Systems and Conservation Laws in D=10, N=1 Supergravity”, to appear in Phys. Lett.

    Google Scholar 

  5. For general discussions on such equations, see, for example, G.L. Lamb, Jr., “Elements of Soliton Theory” (Wiley, New York, 1980);

    MATH  Google Scholar 

  6. M.J. Ablowitz and H. Segur, “Solitons and the Inverse Scattering Transform” (SIAM, Philadelphia, 1981);

    Book  MATH  Google Scholar 

  7. F. Calogero and A. Degasperis, “Spectral Transform and Solitons, I” (North-Holland, Amsterdam, 1982).

    Google Scholar 

  8. Faddeev, L.D. and N. Yu. Reshetikhin, Annals of Physics 167 (1986) 227;

    Article  MathSciNet  ADS  Google Scholar 

  9. E.K. Sklyanin, L.A. Takhtadzhyan, and L.D. Faddeev, Teoreticheskaya i Matematcheskaya Fiziks, Vol. 40 (1979) 194.

    Google Scholar 

  10. Chau, L.-L., in Proceedings of Nonlinear Phenomena, Mexico, 1982, Lecture Notes in Physics 189 (Springer-Verlag, New York, 1983).

    Google Scholar 

  11. Novikov, S., S.V. Manakov, L.P. Pitaevskii and V.E. Zakharov, “Theory of Solitons: The Inverse Scattering Method” (Consultants Bureau, New York, 1984).

    Google Scholar 

  12. Yang, C.N., Phys. Rev. Lett. 38 (1977) 1377.

    Article  MathSciNet  ADS  Google Scholar 

  13. S. Ward, Phys. Lett. 61A (1977) 81.

    ADS  Google Scholar 

  14. Y. Brihaye, D.B. Fairlie, J. Nuyts, R.F. Yates, JMP 19 (1978) 2528.

    Article  MathSciNet  ADS  Google Scholar 

  15. Atiyah, M.F. and R.S. Ward, Commun. Math. Phys. 55 (1977) 117.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Atiyah, M.F., V.G. Drinfeld, N.J. Hitchin and Yu.I. Manin, Phys. Lett. A 65 (1978) 185.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Corrigan, E.F., D.B. Fairlie, R.G. Yates and P. Goddard, Commun. Math. Phys. 58 (1978) 223.

    Article  MathSciNet  ADS  Google Scholar 

  18. Salam, A. and J. Strathdee, Phys. Lett. 51B. 353 (1974).

    MathSciNet  ADS  Google Scholar 

  19. For review see J. Scherk, in Recent Development in Gravitation (Plenum, New York, 1979);

    Google Scholar 

  20. B. Zumino, in Proceedings of the NATO Advanced Study Institute on Recent Developments in Gravity, Cargése, 1978 (Plenum, New York, 1979), p. 405;

    Google Scholar 

  21. J. Wess and J. Bagger, Supersymmetry and Supergravity (Princeton Univ. Press, Princeton, N.J., 1983).

    MATH  Google Scholar 

  22. Witten, E., Phys. Lett. 77B, 394 (1978);

    ADS  Google Scholar 

  23. M. Sohnuis, Nucl. Phys. B136, 461 (1978).

    Article  ADS  Google Scholar 

  24. Volovich, I.V., Phys. Lett. 129B, 429 (1983).

    MathSciNet  ADS  Google Scholar 

  25. Devchan, C., Nucl. Phys. B238, 333 (1984).

    Article  ADS  Google Scholar 

  26. Harnard, J., Hurtubise, J., and Shnider, S., Supersymmetric Yang Mills Equations and Supertwistors, Annals of Physics (to appear).

    Google Scholar 

  27. Chau, L.-L., Ge, M.-L., Popowicz, Z., Phys. Rev. Lett. 52, 1940 (1984);

    Article  MathSciNet  ADS  Google Scholar 

  28. Chau, L.-L., Ge, M.-L., Lim, C.-S., Phys. Rev. D33. 1056 (1986). “Vertex Operators in Mathematics and Physics”, Proceedings of the 1983 Berkeley Workshop, Eds. Lepoulsky, Mandelstam, Singer.

    MathSciNet  ADS  Google Scholar 

  29. Chau, L.-L. and Milewski, B., Phys. Lett. 198 (1987) 356.

    MathSciNet  Google Scholar 

  30. Chau, L.-L. and Chinea, F.J., Lett, in Math. Phys. 12, 189 (1986);

    MathSciNet  ADS  MATH  Google Scholar 

  31. Chau, L.-L., Yen, H.-C., Chen, H.-H., Chinea, F.J., Lee, C-R., Shaw, J.-C, Mod. Phys. Lett. 1, 285 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  32. Chau, L.-L. and Yen, H.-C., J. Math. Phys. 28, 1167 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  33. Chau, L.L., J.C. Shaw, and H.C. Yen, Int. J. of Mod. Phys. 4 (1989) 2715.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Chau, L.-L., Chou, K.-C., Hou, B.-Y., Song, X.-C, Phys. Rev. 34D. 1814 (1986).

    MathSciNet  ADS  Google Scholar 

  35. Chau, L.-L. and Yen, H.C., Phys. Lett. B 177, 368 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  36. Chau, L.-L., Hou, B.-Y., Phys. Lett. 145B, 347 (1984);

    MathSciNet  ADS  Google Scholar 

  37. Chau, L.-L., Hou, B.-Y., Song, X.-C., Phys. Lett. 151B, 421 (1985).

    MathSciNet  ADS  Google Scholar 

  38. Chau, L.-L., Ge, M.-L., “Finite Riemann-Hilbert Transformation and A Unifying Derivation of Bäcklund Transformation”, UCD-87- (1987).

    Google Scholar 

  39. Chau, L.-L., Ge, M.-L., Yen H.-C., J. of Math. Phys. 30 (1989) 166.

    Article  ADS  MATH  Google Scholar 

  40. For a recent review on the field: see Chau, L.L., “Geometrical Integrability and Equations of Motion in Physics: A Unifying View,” talk given at the Workshop held at Nankai Institute of Mathematics, Nankai University Tianjin, China.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chau, LL. (1990). Nonlinear Differential Equations in Physics and Their Geometrical Integrability Properties. In: Chau, LL., Nahm, W. (eds) Differential Geometric Methods in Theoretical Physics. NATO ASI Series, vol 245. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9148-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9148-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9150-0

  • Online ISBN: 978-1-4684-9148-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics