Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 245))

  • 709 Accesses

Abstract

It has been clear for some time now that not all compactification schemes used to construct consistent Heterotic String vacua are independent. This is particularly obvious in the case of Calabi-Yau manifold compactifications and the c = 9, N — 2 minimal superconformai tensor models. In two case studies [1] Gepner presented compelling evidence for the existence of a deep relation between exact models and Calabi-Yau manifolds (CYs). Gepner showed that not only do these two models have the same massless spectrum and exhibit the same discrete symmetries, but that the fields also transform in the same way under discrete symmetry transformations. Although somewhat indirect, this evidence lead Gepner to conjecture that all exact N = 2 superconformai models correspond to Calabi-Yau manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rerences

  1. D. Gepner, Phys.Lett.199B(1987) 380; String Theory on Calabi-Yau manifolds: The Three-Generation Case, PUPT preprint.

    MathSciNet  ADS  Google Scholar 

  2. E.J.Martinec, Phys.Lett. 217B(1989)431.

    MathSciNet  ADS  Google Scholar 

  3. B.R.Greene, C.Vafa and N.Warner, “Calabi-Yau Manifolds and Renormalization Group Flows”, HUTP-88/A047, preprint.

    Google Scholar 

  4. A.B.Zamolodchikov, Sov.J.Phys. 44(1986)529

    MathSciNet  Google Scholar 

  5. [Yad.Fiz. 44 (1986)821].

    MathSciNet  Google Scholar 

  6. D.A. Kastor, E.J. Martinec and S.H. Shenker, Nuc. L. Phys. B316(1989)590.

    Article  MathSciNet  ADS  Google Scholar 

  7. C. Vafa and N. Warner, Phys.Lett. 218B(1989)51.

    MathSciNet  ADS  Google Scholar 

  8. M. Lynker and R. Schimmrigk, Phys.Lett.208B(1988)216;

    MathSciNet  ADS  Google Scholar 

  9. ibid 215B(1988)681;

    MathSciNet  ADS  Google Scholar 

  10. C.A. Lütken and G.G. Ross, Phys.Lett 213B(1988)512.

    Google Scholar 

  11. R. Schimmrigk, “Heterotic RG Flow Fixed Points with Non-Diagonal Affine Invariants”, UTTG-13–89 preprint.

    Google Scholar 

  12. M. Lynker and R. Schimmrigk, preprint in preparation.

    Google Scholar 

  13. E. Witten, Nucl.Phys. B268(1986)79.

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Dine and N. Seiberg, Phys.Rev.Lett. 57(1986)2625.

    Article  MathSciNet  ADS  Google Scholar 

  15. J. Distler and B.R. Greene, Nucl.Phys, B309(1988) 295;

    Article  MathSciNet  ADS  Google Scholar 

  16. D. Gepner, Nucl.Phys. B311(1988)191;

    Article  MathSciNet  ADS  Google Scholar 

  17. G. Sotkov and M. Stanishkov, Phys.Lett. 215B(1988)674.

    MathSciNet  ADS  Google Scholar 

  18. S. Cordes and Y. Kikuchi, “Correlation Functions and Selection Rules in Minimal N=2 String Compactification”, CPT-TAMU-92/88 preprint;

    Google Scholar 

  19. B. R. Greene, C.A. Lütken and G.G. Ross, “Couplings in the Heterotic SuperconformaiThree Generation Model”, HUTP-88/A062, Nordita-89/8P preprint.

    Google Scholar 

  20. R. Schimmrigk, “Heterotic (2,2)-Vacua: Manifold Theory and Exact Results”, UTTG-32–89 preprint.

    Google Scholar 

  21. R.Schimmrigk, Phys.Lett. 193B(1987)175

    MathSciNet  ADS  Google Scholar 

  22. I. Dolgachev, in: Group actions and vector fields, ed. J. Carrell, Springer LNM, Vol. 956 (Springer, Berlin);

    Google Scholar 

  23. A. Dimca, J.Reine Ang. Math. 366(1986)184.

    MathSciNet  MATH  Google Scholar 

  24. P.Candelas, A.Dale, C.A.Liitken and R.Schimmrigk, Nucl.Phys. B298 (1988)493.

    Article  ADS  Google Scholar 

  25. S.-S.Roan and S.-T.Yau, Acta Math. Sinica, (New Series) 3(1987)256.

    Article  MathSciNet  MATH  Google Scholar 

  26. F.Hirzebruch, Math.Ann. 126(1953)1.

    Article  MathSciNet  MATH  Google Scholar 

  27. Y.Kazama and H.Suzuki, Phys.Lett 216B(1989)112;

    MathSciNet  ADS  Google Scholar 

  28. Nucl Phys. B321(1989)232.

    Article  MathSciNet  ADS  Google Scholar 

  29. C.T.C.Wall, Inv.Math. 1(1966)355.

    Article  ADS  Google Scholar 

  30. R.Hartshorne, Algebraic Geometry (Springer, Berlin, 1977)

    Book  MATH  Google Scholar 

  31. P.Griffiths and J.Harris, Principles of Algebraic Geometry (Wiley-Interscience, New York, 1978)

    MATH  Google Scholar 

  32. D.Gepner, Nucl.Phys. B296(1988)757.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schimmrigk, R. (1990). Classical and Quantum Calabi-Yau Manifolds. In: Chau, LL., Nahm, W. (eds) Differential Geometric Methods in Theoretical Physics. NATO ASI Series, vol 245. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9148-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9148-7_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9150-0

  • Online ISBN: 978-1-4684-9148-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics