Skip to main content

Coulomb-Gas Construction on Higher-Genus Riemann Surfaces

  • Chapter
Differential Geometric Methods in Theoretical Physics

Part of the book series: NATO ASI Series ((NSSB,volume 245))

  • 719 Accesses

Abstract

The Coulomb-gas construction provides a powerful tool for computing correlation functions in the minimal series of two-dimensional conformai field theories. The basic idea is to replace the irreducible highest-weight representations of the Virasoro algebra with the simpler Fock space of a free scalar field. It has been known for some time [1] that on such Fock spaces one can construct representations of the Virasoro algebra with arbitrary central charge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.B. Fairle, unpublished; A. Chodos and C. Thorn, Nucl. Phys. B72 (1974) 59.

    Google Scholar 

  2. B.L. Feigin and D.B. Fuchs, Funct. Anal. and Appl., 13, N4 (1979) 91; Funct. Anal. and Appl., 16, N2 (1982) 47; Representations of the Virasoro Algebra.

    MATH  Google Scholar 

  3. B.L. Feigin and D.B. Fuchs, Funct. Anal. and Appl., 16, N2 (1982) 47;

    Article  Google Scholar 

  4. V. Dotsenko and V.A. Fateev, Nucl. Phys. B224 (1984) 312; Nucl. Phys. B251 (1985) 691.

    Article  MathSciNet  ADS  Google Scholar 

  5. V. Dotsenko and V.A. Fateev, Nucl. Phys. B251 (1985) 691.

    Article  MathSciNet  ADS  Google Scholar 

  6. G. Felder, Nucl. Phys. B317 (1989) 215.

    Article  MathSciNet  ADS  Google Scholar 

  7. C. Thorn, Nucl. Phys. B248 (1984) 551.

    Article  MathSciNet  ADS  Google Scholar 

  8. J. Bagger, D. Nemeschansky, and J.B. Zuber, Phys. Lett. B216 (1988) 320; T. Jayaraman and K.S. Narain, ICTP preprint (1988); O. Foda and B. Nienhuis, Utrecht preprint (1988).

    MathSciNet  ADS  Google Scholar 

  9. H. Sonoda, Nucl. Phys. B311 (1988) 401; Nucl. Phys. B311 (1988) 417.

    Article  MathSciNet  ADS  Google Scholar 

  10. H. Sonoda, Nucl. Phys. B311 (1988) 417.

    Article  MathSciNet  ADS  Google Scholar 

  11. J. Bagger and M. Goulian, Harvard preprint (1989).

    Google Scholar 

  12. G. Felder and A. Silvotti, ETH preprint (1989).

    Google Scholar 

  13. See also A. Morozov and A Gerasimov, Phys. Lett. B225 (1989) 87; O. Foda, Nijmegan preprint (1989);

    MathSciNet  ADS  Google Scholar 

  14. M. Frau, A. Lerda, J. McCarthy and S. Sciuto, Phys. Lett. B228 (1989) 205.

    MathSciNet  ADS  Google Scholar 

  15. E. Verlinde and H. Verlinde, Nucl. Phys. B288 (1987) 357.

    Article  MathSciNet  ADS  Google Scholar 

  16. L. Alvarez-Gaumé, G. Moore, C. Vafa, Comm. Math. Phys. 106 (1986) 1.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. G. Felder and R. Silvotti, ETH preprint (1988).

    Google Scholar 

  18. V. Dotsenko, Kyoto preprint (1986).

    Google Scholar 

  19. A. Capelli, C. Itzykson, and J.-B. Zuber, Nucl. Phys. B280(1987) 445.

    Article  ADS  Google Scholar 

  20. For recent progress in this direction, see [9].

    Google Scholar 

  21. V. Fateev and A. Zamolodchikov, Nucl. Phys. B280 (1987) 644.

    Article  MathSciNet  ADS  Google Scholar 

  22. V. Fateev and S. Lykanov, Int. J. Mod. Phys. A3 (1988) 507.

    ADS  Google Scholar 

  23. M. Wakimoto, Commun. Math. Phys. 104 (1986) 605;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. A. Zamolodchikov, Montreal seminar (1988);

    Google Scholar 

  25. V. Dotsenko, Harvard seminar (1989);

    Google Scholar 

  26. A. Gerasimov, A. Marshakov, A. Morozov, M. Olshanetsky and S. Shatashvili, ITEP preprint (1989);

    Google Scholar 

  27. B. L. Feigin and E. Frenkel, Moscow preprint (1989);

    Google Scholar 

  28. D. Nemeschansky, Phys. Lett. B224 (1989) 121; USC preprint (1989);

    MathSciNet  ADS  Google Scholar 

  29. J. Distler and Z. Qiu, Cornell preprint (1989);

    Google Scholar 

  30. D. Bernard and G. Felder, ETH preprint (1989);

    Google Scholar 

  31. K. Ito, UT-Komaba preprint (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bagger, J., Goulian, M. (1990). Coulomb-Gas Construction on Higher-Genus Riemann Surfaces. In: Chau, LL., Nahm, W. (eds) Differential Geometric Methods in Theoretical Physics. NATO ASI Series, vol 245. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9148-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9148-7_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9150-0

  • Online ISBN: 978-1-4684-9148-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics