Skip to main content

Non-Compact Current Algebras and Heterotic Superstring Vacua

  • Chapter
  • 711 Accesses

Part of the book series: NATO ASI Series ((NSSB,volume 245))

Abstract

It has been shown that a four dimensional finite and consistent superstring theory [1] can be constructed by combining any 2-dimensional superconformai field theory with a central charge c=9 with a superstring propagating in flat 4-dimensional Minkowski space-time. Each distinct superconformai field theory corresponds to a possible vacuum state of the full string theory. For N=1 supersymmetry to emerge in this vacuum in 4-dimensions, an N=2 worldsheet supersymmetry is necessary [2]. Gepner has provided [3] a procedure for the construction of a heterotic superstring that satisfies the required properties including modular invariance by using the above ingredients.

Research supported in part by DOE Grant No. DE-FG03-84ER40168.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.B. Green and J.H. Schwarz, Nucl. Phys. B255 (1985) 92.

    MathSciNet  ADS  Google Scholar 

  2. D.J. Gross, J. Harvey, E.J. Martinec, and R. Rhom, Nucl.Phys. B256 (1985) 253.

    Article  ADS  Google Scholar 

  3. T. Banks, L.J. Dixon, D. Friedan, and E. Martinec, Nucl.Phys. B299 (1988) 613.

    Article  MathSciNet  ADS  Google Scholar 

  4. D. Gepner, Nucl. Phys. B296 (1987) 757,

    MathSciNet  ADS  Google Scholar 

  5. D. Gepner, Phys. Lett 199B (1987) 380.

    MathSciNet  ADS  Google Scholar 

  6. I. Bars, USC preprint, USC-89/HEP02, May 1989.

    Google Scholar 

  7. D. Gepner and E. Witten, Nucl.Phys. B278 (1986) 493.

    Article  MathSciNet  ADS  Google Scholar 

  8. M.B. Halpern, Phys.Rev. D4 (1971) 2398.

    ADS  Google Scholar 

  9. P. Goddard, A. Kent and D. Olive, Phys. Lett. 152B (1985) 88,

    MathSciNet  ADS  Google Scholar 

  10. P. Goddard, A. Kent and D. Olive, Comm. Math. Phys. 103 (1986) 105.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Y. Kazama and H. Suzuki, preprint UT-Komaba 88–8 (1988).

    Google Scholar 

  12. L. Dixon, M.E. Peskin and J. Lykken, SLAC-PUB-4884 (1989).

    Google Scholar 

  13. P. Goddard and D. Olive, Int. J. Mod. Phys. A, 1 (1986) 303.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. D. Nemeshansky and S. Yankieolowicz, Phys. Rev. Lett. 54 (1985) 620.

    Article  MathSciNet  ADS  Google Scholar 

  15. V. Bargmann, Ann. Math. 48 (1947) 568

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Bargmann, Comm. Pure & Appl. Math. 14 (1961) 187.

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Gursey and S. Orfanidis, Phys.Rev. D7 (1973) 2414.

    ADS  Google Scholar 

  18. I. Bars and Z.J. Teng, to be published.

    Google Scholar 

  19. I. Bars, Lect. Applied Math. 21 (1983) 17.

    MathSciNet  Google Scholar 

  20. M. Günaydin and C. Saclioglu, Comm. Math. Phys. 87 (1982) 159.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. A.M. Perelemov and V.S. Popov, Sov. J. Nucl. Phys. 3 (1966) 676

    Google Scholar 

  22. A.M. Perelemov and V.S. Popov, Sov. J. Nucl. Phys. 5 (1967) 489.

    Google Scholar 

  23. M.A. Naimark, Linear Representations of the Lorentz Group, Pergamon Press, 1964.

    Google Scholar 

  24. I.M. Gelfand, M.I. Graev and N.Y. Vilenkin, Generalized Functions, Vol.5, N.Y. Academic Press 1968.

    Google Scholar 

  25. I. Bars and F. Gursey, J. Math. Phys. 13 (1972) 131.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. P. Goddard, W. Nahm and D. Olive, Phys. Lett. 160B (1985) 111.

    MathSciNet  ADS  Google Scholar 

  27. M. Green, J.H. Schwarz and E. Witten, Superstring Theory, Cambridge Univ. Press (1987).

    MATH  Google Scholar 

  28. A. Cappelli, C. Itzykson and J.B. Zuber, Nucl. Phys. B280 (1987) 445.

    Article  MathSciNet  ADS  Google Scholar 

  29. D. Gepner and Z. Qiu, Nucl.Phys. B285 (1987) 423.

    Article  MathSciNet  ADS  Google Scholar 

  30. C. A. Lutken and G. Ross, Phys. Lett. B213 (1988) 152.

    MathSciNet  ADS  Google Scholar 

  31. I. Bars, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bars, I. (1990). Non-Compact Current Algebras and Heterotic Superstring Vacua. In: Chau, LL., Nahm, W. (eds) Differential Geometric Methods in Theoretical Physics. NATO ASI Series, vol 245. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9148-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9148-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9150-0

  • Online ISBN: 978-1-4684-9148-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics