Skip to main content

New Kinematics (Statistics and Symmetry) in Low-Dimensional QFT with Applications to Conformal QFT2

  • Chapter
Differential Geometric Methods in Theoretical Physics

Part of the book series: NATO ASI Series ((NSSB,volume 245))

Abstract

The concepts of field commutation relation, particle statistics and the origin of internal symmetries always have been considered as fundamental in quantum field theory. In the standard Lagrangian approach one usually starts with fields having Fermi- or Bose-statistics which carry an internal compact Lie-group symmetry (i.e. a subgroup of SU n for large enough n). These fields are then “coupled” in order to implement the idea of local interactions in accordance with the Einstein causality of observables. For the most interesting cases of strictly renormalizable interactions (pocessing dimensionless coupling constants) as e.g. “local gauge theories”, there is essentially no non-perturbative analytic result.

Based on joint work with K. Fredenhagen and K.H. Rehren

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Haag and D. Kastler, J. Math. Phys. 5, 848 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. S. Doplicher, R. Haag and J. Roberts, Comm. Math. Phys. 23, 199 (1971) and 35, 49 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  3. H.J. Borchers, Comm. Math. Phys. 121, 251 (1965).

    Google Scholar 

  4. D. Buchholz and K. Fredenhagen, Comm. Math. Phys. 84, 1 (1982).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. K. Fredenhagen, K.H. Rehren and B. Schroer: Superselection sectors with braid group statistics and exchange algebras I General Theory (to appear in Comm. Math. Phys.), II (to be published).

    Google Scholar 

  6. V. Jones, Invent. Math. 72 (1983), Ann. Math. 126, 335 (1987).

    Article  MATH  Google Scholar 

  7. R. Longo: Index of subfactors and statistics of quantum field I (to appear in Comm. Math. Phys.), II, University of Rome preprint 1989.

    Google Scholar 

  8. For an early accoutn of the recent development see B. Schroer “Algebraic Aspects of Non-Perturbative Quantum Field Theories”, Como 1987 in Differential Geometric Methods in Theoretical Physics, ed, K. Bleuler and M. Werner.

    Google Scholar 

  9. K.H. Rehren and B. Schroer, Nucl. Phys. 312, 3 (1989) and references therein.

    Article  MathSciNet  Google Scholar 

  10. J. Fröhlich: Statistics of fields the Yang-Baxter equation and the theory of knots and links, Proceedings of the 1987 Cargèse School.

    Google Scholar 

  11. This illustration is taken from B. Schroer: New Concepts and Results in Nonperturbative Quantum field theory, in Differential Geometric Methods in Theoretical Physics, Chester 1988, Editor Allan I. Solomon, where also the appropriate references can be found.

    Google Scholar 

  12. For a recent reference: M. Karowski, Yang-Baxter-Algebra-Integrable Systems — Con-formal Quantum Field Theories, ETH-TH/89–13.

    Google Scholar 

  13. B. Schroer: High T c Superconductivity and a New Symmetry Concept in Low dimensional QFT, FU Berlin preprint, April 1989.

    Google Scholar 

  14. D. Buchholz, C. D’Antoni and K. Fredenhagen, Comm. Math. Phys. 111, 123–135 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. S. Doplicher and J. Roberts: C* algebras and duality for compact groups: why there is a compact group of internal gauge symmetry in particle physics, Proceedings Marseille 1986 (eds. M. Mebkhout and R. Séneor) World Scientific 1987.

    Google Scholar 

  16. V.G. Drinfeld: Quantum groups, Proceedings ICM (1986). M. Jombo. Lett, in Math. Phys. 11, 247 (1986).

    Article  Google Scholar 

  17. J. von Neumann, Ann. Math. 50 (1949), 401–485 and references to previous publications.

    Article  MATH  Google Scholar 

  18. A. Connes, Correspondences, hand-written notes. S. Popa, Correspondences, INCREST preprint 1986.

    Google Scholar 

  19. A. Ocneanu: Quantized Groups, String Algebras and Galois Theory for Algebras, Dept. of Mathematics Research Report, Pennsylvania State University, State College 1988. Talk given at this conference.

    Google Scholar 

  20. K. Fredenhagen, talk given at this conference.

    Google Scholar 

  21. D. Buchholz, G. Mack and J. Todorov: The current algebra on the circle as a germ of local field theories, DESY 88–126 (preprint).

    Google Scholar 

  22. E. Witten, Comm. Math. Phys. 121, 351 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. J.R. McMullen and J.F. Price: Reversible hypergroups, Rendi. del Sem. Mat. e. fis. de Milano XL VII (1977), 67–85

    Google Scholar 

  24. K.A. Ross: Hypergroups and centers of measure algebras, 1st. Naz. di Alta Mat. Symposia, Math. Vol XXII (1977), 189–203.

    Google Scholar 

  25. A. Ocneanu (unpublished), H. Wenzl, Invent. Math. 92, 349 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  26. S. Popa: Classification of subfactors: the finite depth case, preprint 1989.

    Google Scholar 

  27. B. Schroer and J.A. Swieca, Phys. Rev. D10 (1974) 480.

    MathSciNet  ADS  Google Scholar 

  28. See also B. Schroer, J.A. Swieca and A.H. Völkel, Phys. Rev. D11 (1975) 1509.

    ADS  Google Scholar 

  29. R. Köberle and E.C. Marino, Phys. Lett. B126, 6, 475 (1983).

    ADS  Google Scholar 

  30. R. Brustein, lecture given at this conference.

    Google Scholar 

  31. K. Fredenhagen and J. Hertel, Comm. Math. Phys. 80, 555 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  32. V.S. Sunder: II 1 factors, their bimodules and hypergroups, University of Bangalore, Indian Statistical Institute preprint (1989). Sunders fundamental conjecture is that every hypergroup has precisely one R-R bimodule realization.

    Google Scholar 

  33. This observation Ocneanu attributes to V. Pasquirer, see ref. 19.

    Google Scholar 

  34. A. Wassermann, talk given at the U.S. — U.K. joint conference on Operator Algebras at Warwick in July 1987, University of Liverpool preprint.

    Google Scholar 

  35. Yu. Reshetikhin: Quantized Universal Enveloping Algebra, The Yang-Baxter Equations and Invariants of Links I, II, Lomi preprint 1988.

    Google Scholar 

  36. A. Lima Santos and B. Schroer, in preparation as a FU preprint.

    Google Scholar 

  37. A. Capelli, C. Itzykson and H.B. Zuber, Nucl. Phys. B280, 445 (1987).

    Article  ADS  Google Scholar 

  38. J. Cardy, Nucl. Phys. B270, [FS 16], (1986) 186.

    Article  MathSciNet  ADS  Google Scholar 

  39. K. Fredenhagen: Structural Aspects of Gauge Theories in the Algebraic Framework of Quantum Field Theory, University of Freiburg preprint 1982, THEP 82/9.

    Google Scholar 

  40. Many of the recent (and yet unpublished) results on the description of plektons in particular for d = 3 have been obtained in collaboration of K. Fredenhagen, K.H. Rehren, R. Schrader and myself.

    Google Scholar 

  41. Anyons in configuration-space or path-space formulation have a long history: J.M. Leinaas and J. Myrheim, Il Nuovo Cimento 37B, 1 (1977)

    ADS  Google Scholar 

  42. F. Wilszek, Phys. Rev. Lett. 48, 1144 (1982)

    Article  ADS  Google Scholar 

  43. F. Wilszek and A. Zee, Phys. Rev. Lett. 51, 2250 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  44. F. Wilszek and A. Zee, Phys. Rev. Lett**. 49, 975 (1982)

    ADS  Google Scholar 

  45. Y.S. Wu, Phys. Rev. 53, 111 (1984)

    ADS  Google Scholar 

  46. J. Fröhlich and P.A. Marchetti, Comm. Math. Phys. 121, 177 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. All of these treatments are in configuration- or path-space. No operator construction has been presented in d = 3 dimensions.

    Google Scholar 

  48. For an interesting account including the histroy of abelian braid group statistics in d = 2 dimensions (including Klaibers 1967 work) see

    Google Scholar 

  49. J. A. Swieca: Fields With Generalized Statistics: An Exercise in Order- and Disorder in two Dimensional Systems, PUC preprint 1980, published in the 1980 Karpacz Winter School proceedings.

    Google Scholar 

  50. B. Schroer and J.A. Swieca, Nucl. Phys. B121, 505 (1977).

    Article  ADS  Google Scholar 

  51. B. Schroer, T.T. Truong and P. Weisz, Ann. Phys. 102, 156 (1976).

    Article  ADS  Google Scholar 

  52. The Bogolinkov-Valatin part of the anyonic operators appears at many places: B. Schroer, Nucl. Phys. 295 [FS 21], (1988) 586, formula (2.22) and references.

    Article  MathSciNet  ADS  Google Scholar 

  53. This was discussed by J. Fröhlich at the 1989 Ringberg meeting.

    Google Scholar 

  54. A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Nucl. Phys. B241, 333 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  55. R.F. Streater and A.S. Wightman: PCT, Spin And Statistics And All That, Theorem 4–15, W.A. Benjamin, Inc. 1964.

    Google Scholar 

  56. J.E. Roberts: Spontaneously Broken Gauge Symmetries and Superselection Rules, Proceedings of the International School of Mathematical Physics, Camerino 1974, University di Camerino 1976.

    Google Scholar 

  57. J.E. Roberts, Comm. Math. Phys. 51, 107 (1976).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. V.G. Knishnik and A.B. Zamolodchikov, Nucl. Phys. B247, 83 (1984).

    Article  ADS  Google Scholar 

  59. B. Schroer in: A Trip to Scalingland, Lectures given at the V Brasilian Symposium on Theoretical Physics, Rio de Janeiro, January 1974, Vol. I, Editor Erasmo Ferreira, R. Dashen and V. Frishman, Phys. Rev. D11, 2781 (1973). In both papers, the algebraic version of the K-Z equation appears for the first time. The old papers on string theory also were much more algebraic and there is a lot in common with the beginnings of conformal QFT2:

    Google Scholar 

  60. K. Bardakci and M.B. Halperin, Phys. Rev. D3, 2493 (1971)

    ADS  Google Scholar 

  61. M.B. Halperin, Phys. Rev. D4, 2398 (1971).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schroer, B. (1990). New Kinematics (Statistics and Symmetry) in Low-Dimensional QFT with Applications to Conformal QFT2 . In: Chau, LL., Nahm, W. (eds) Differential Geometric Methods in Theoretical Physics. NATO ASI Series, vol 245. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9148-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9148-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9150-0

  • Online ISBN: 978-1-4684-9148-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics