Skip to main content

Characterization of Superlattices by X-Ray Diffraction

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 163))

Abstract

X-ray diffraction line profiles from layered structures grown epitaxially on perfect single crystal substrates contain a lot of information which can be correlated with the concentration depth profile in the grown structure (Bartels and Nijman, 1978). The diffraction profiles (rocking curves) of perfect crystals like silicon and gallium arsenide have a very narrow intrinsic half-width down to 2″, so that it is possible to detect the small changes in lattice constant typically related with processes like epitaxy, diffusion and ion-implantation. For this purpose a high-resolution X-ray diffractometer has been designed, where the germanium four-crystal monochromator results in an almost parallel and monochromatic incident beam for investigating the specimen (Bartels, 1983; Bartels, 1983/84). The actual concentration depth profile in a given layered structure can only be obtained after a detailed comparison of observed and calculated diffraction profiles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartels, W.J., 1983, Characterization of thin layers on perfect crystals with a multipurpose high resolution X-ray diffractometer, J. Vac. Sci. Technol ., B1:338.

    Google Scholar 

  • Bartels, W.J., 1983/84, High-resolution X-ray diffractometer, Philips Tech. Rev., 41:183.

    Google Scholar 

  • Bartels, W.J., Hornstra, J., and Lobeek, D.J.W. 1986, X-ray diffraction of multilayers and superlattices, Acta Crystallogr., A42:xx.

    Google Scholar 

  • Bartels, W.J., and Nijman, W., 1978, X-ray double-crystal diffractometry of Ga(1-x)Al(x)As epitaxial layers, J. Cryst. Growth, 44:518.

    Article  ADS  Google Scholar 

  • Born, M., and Wolf, E., 1980, “Principles of Optics,” Pergamon Press, Oxford.

    Google Scholar 

  • Chang, L.L., Segmüller, A., and Esaki, L., 1976, Smooth and coherent layers of GaAs and AlAs grown by molecular beam epitaxy, Appl. Phys. Lett., 28:39.

    Article  ADS  Google Scholar 

  • Chrzan, D., and Dutta, P., 1986, The effect of interface roughness on the intensity profiles of Bragg peaks from superlattices, J. Appl. Phys., 59:1504.

    Article  ADS  Google Scholar 

  • Fingerland, A., 1971, Some properties of the single-crystal rocking curve in the Bragg case, Acta Crystallogr., A27:280.

    ADS  Google Scholar 

  • Fleming, R.M., McWhan, D.B., Gossard, A.C., Wiegmann, W., and Logan, R.A., 1980, X-ray diffraction study of interdiffusion and growth in (GaAs)n(AlAs)m multilayers, J. Appl. Phys., 51:357.

    Article  ADS  Google Scholar 

  • Fukuhara, A., and Takano, Y., 1977, Determination of strain distributions from X-ray Bragg reflexion by silicon single crystals, Acta Crystallogr., A33:137.

    ADS  Google Scholar 

  • Halliwell, M.A.G., and Lyons, M.H., and Hill, M.J., 1984, The interpretation of X-ray rocking curves from III-V semiconductor device structures, J. Cryst. Growth, 68:523.

    Article  ADS  Google Scholar 

  • Hornstra, J., and Bartels, W.J., 1978, Determination of the lattice constant of epitaxial layers of III-V compounds, J. Cryst. Growth, 44:513.

    Article  ADS  Google Scholar 

  • International Tables for X-Ray Crystallography, Vol. IV, 1974, J.A. Ibers and W.C. Hamilton, eds., The Kynoch Press, Birmingham.

    Google Scholar 

  • James, R.W., 1963, The dynamical theory of X-ray diffraction, in: “Solid State Physics Vol. 15,” F. Seitz and D. Turnbull, eds., Academic Press, New York.

    Google Scholar 

  • James, R.W., 1967, “The Optical Principles of the Diffraction of X-Rays,” Bell, London.

    Google Scholar 

  • Kervarec, J., Baudet, M., Caulet, J., Auvray, P., Emery, J.Y., and Regreny, A., 1984, Some aspects of the X-ray structural characterization of (GaAlAs)n1(GaAs)n2/GaAs(001) superlattices, J. Appl. Cryst., 17:196.

    Article  Google Scholar 

  • Larson, B.C., and Barhorst, J.F., 1980, X-ray study of lattice strain in boron implanted laser annealed silicon, J. Appl. Phys., 51:3181.

    Article  ADS  Google Scholar 

  • Lee, P., 1981, X-ray diffraction in multilayers, Opt. Commun., 37:159.

    Article  ADS  Google Scholar 

  • McWhan, D.B., 1985, Structure of chemically modulated films, in: “Synthetic Modulated Structures,” L.L. Chang and B.C. Giessen, eds., Academic Press, New York.

    Google Scholar 

  • McWhan, D.B., Gurvitch, M., Rowell, J.M., and Walker, L.R., 1983, Structure and coherence of NbAl multilayer films, J. Appl. Phys., 54:3886.

    Article  ADS  Google Scholar 

  • Pinsker, Z.G., 1978, “Dynamical Scattering of X-Rays in Crystals,” Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Saxena, A.M., and Schoenborn, B.P., 1977, Multilayer neutron monochromators, Acta Crystallogr., A33:805.

    ADS  Google Scholar 

  • Segmüller, A., 1979, Small-angle interferences of X-rays reflected from periodic and near-periodic multilayers, in: “AIP Conference Proceedings No. 53,” J.M. Cowley, J.B. Cohen, M.B. Salamon, and B.J. Wuensch, eds., American Institute of Physics, New York.

    Google Scholar 

  • Segmüller, A., and Blakeslee, A.E., 1973, X-ray diffraction from one-dimensional superlattices in GaAs(1-x)P(x) crystals, J. Appl. Cryst., 6:19.

    Article  Google Scholar 

  • Segmüller, A., Krishna, P., and Esaki, L., 1977, X-ray diffraction study of a one-dimensional GaAs-AlAs superlattice, J. Appl. Cryst., 10:1.

    Article  Google Scholar 

  • Speriosu, V.S., and Vreeland Jr., T., 1984, X-ray rocking curve analysis of superlattices, J. Appl. Phys., 56:1591.

    Article  ADS  Google Scholar 

  • Spiller, E., and Rosenbluth, A.E., 1985, Determination of thickness errors and boundary roughness from the measured performance of a multilayer coating, in: “Applications of Thin-Film Multilayered Structures to Figured X-Ray Optics,” SPIE Vol. 563:221, G.F. Marshall, ed., SPIE, Washington.

    Google Scholar 

  • Takagi, S., 1969, A dynamical theory of diffraction for a distorted crystal, J. Phys. Soc. Jpn, 26:1239.

    Article  ADS  Google Scholar 

  • Tapfer, L., and Ploog, K., 1986, Improved assessment of structural properties of Al(x)Ga(1-x)As/GaAs heterostructures and superlattices by double-crystal X-ray diffraction, Phys. Rev. B, 33:5565.

    Article  ADS  Google Scholar 

  • Taupin, D., 1964, Theorie dynamique de la diffraction des rayons X par les cristaux déformés, Bull. Soc. Fr. Minéral. Crystallogr., 87:469.

    Google Scholar 

  • Terauchi, H., Sekimoto, S., Kamigaki, K., Sakashita, H., Sano, N., Kato, H., and Nakayama, M., 1985, X-ray studies of semiconductor superlattices grown by molecular beam epitaxy, J. Phys. Soc. Jpn, 54:4576.

    Article  ADS  Google Scholar 

  • Underwood, J.H., and Barbee Jr., T.W., 1981, Layered synthetic microstructures as Bragg diffractors for X-rays and extreme ultraviolet: theory and predicted performance, Appl. Opt., 20:3027.

    Article  ADS  Google Scholar 

  • Vardanyan, D.M., and Manoukyan, H.M., and Petrosyan, H.M., 1985, The dynamic theory of X-ray diffraction by the one-dimensional ideal superlattice. I. Diffraction by the arbitrary superlattice, Acta Crystallogr., A41:212.

    Google Scholar 

  • Wie, C.R., Tombrella, T.A., and Vreeland Jr., T., 1986, Dynamical X-ray diffraction from nonunifrom crystalline films: Application to X-ray rocking curve analysis, J. Appl. Phys., 59:3743.

    Article  ADS  Google Scholar 

  • Zachariasen, W.H., 1945, “Theory of X-ray Diffraction in Crystals,” Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bartels, W.J. (1987). Characterization of Superlattices by X-Ray Diffraction. In: Farrow, R.F.C., Parkin, S.S.P., Dobson, P.J., Neave, J.H., Arrott, A.S. (eds) Thin Film Growth Techniques for Low-Dimensional Structures. NATO ASI Series, vol 163. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9145-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9145-6_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9147-0

  • Online ISBN: 978-1-4684-9145-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics