Skip to main content

Increased Magnetic Moments in Transition Elements Through Epitaxy

  • Chapter
Thin Film Growth Techniques for Low-Dimensional Structures

Part of the book series: NATO ASI Series ((NSSB,volume 163))

Abstract

The elements of the first transition series, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu, are of special importance for magnetism and metallurgy. The phase diagrams of these elements and their alloys with one another and elements such as C, Si and Al fill encylopedic volumes.1–5 The correlation between atom size, by various measures, and magnetic moment has long been noted.6 This correlation is readily seen by comparing the atomic concentrations of the first, second and third transition series elements as shown in Fig. 1, where the densities for the second and third series elements have been scaled for comparison with the first transition series. It seems that there is some missing density, excess volume, in Cr, Mn, Fe, Co, and Ni, all of which show ordering of magnetic moments. The main purpose of this paper is to argue that in the cases of Fe, Mn, Cr, and possibly V, artificially increasing the volume of these elements through controlled epitaxial growth may lead to higher magnetic moments and other technologically important magnetic properties. We like to call this atomic engineering, implying that we are building structures atom by atom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Hansen, “Constitution of Binary Alloys”, 2nd ed. McGraw-Hill, New York (1958)

    Google Scholar 

  2. R. P. Elliott, “Constitution of Binary Alloys, First Supplement”, McGraw-Hill, New York (1965)

    Google Scholar 

  3. F. A. Shunk, “Constitution of Binary Alloys, Second Supplement”, McGraw-Hill, New York (1969)

    Google Scholar 

  4. W.B. Pearson, “A Handbook of Lattice Spacing and Structures of Metals and Alloys, Vol. 2”, Pergamon Press, Oxford (1967) pp 55–75

    Google Scholar 

  5. P. Villars and L.D. Calvert, “Pearson’s Handbook of Crystallographic Data for Intermetallic Phases” in 3 vols., American Society for Metals, Cleveland (1985)

    Google Scholar 

  6. W.B. Pearson, “A Handbook of Lattice Spacing and Structures of Metals and Alloys”, Pergamon Press, Oxford (1958), pp 55–75;

    Google Scholar 

  7. see also M. Shiga, Correlation Between Lattice Constant and Magnetic Moment in 3d Transition Metal Alloys in “1973- Magnetism and Magnetic Materials”, American Institue of Physics, New York (1974), p 463–477

    Google Scholar 

  8. T.K. Kim and M. Takahashi, New Magnetic Material Having Ultrahigh Magnetic Moment, Appl. Phys. Lett. 20,492(1972),

    Article  ADS  Google Scholar 

  9. K. Mitsuoka, H. Miyajima, H. Ino and S. Chikazumi, Induced Magnetic Moment in Ferromagnetic Fe Alloys by Tetragonally Elongated Lattice Expansion, J. Phys. Soc. Jpn, 53:2381–2390 (1984)

    Article  ADS  Google Scholar 

  10. B.C. Frazer, Magnetic Structure of Fe4N, Phys. Rev. 112:75 (1958);

    Article  ADS  Google Scholar 

  11. also W.J. Takei, G. Shirane and B.C. Frazer, Magnetic Structure of Mn4N, Phys. Rev. 119:122 (1961)

    Article  ADS  Google Scholar 

  12. B.T. Jonker, K.-H Walker, E. Kisker, G.A. Prinz, and C. Carbone, Spin-polarized Photoemission Study of Epitaxial Fe(001) Films on Ag(001), Phys. Rev. Lett. 57:142 (1986);

    Article  ADS  Google Scholar 

  13. J. G. Gay and R. Richter, Phys. Rev. Lett. 56:2728 (1986)

    Article  ADS  Google Scholar 

  14. S.D. Bader, E.R. Moog and P. Grunberg, J. Magn. Magn. Mat. 53:L295 (1985);

    Article  Google Scholar 

  15. B.L. Gyorffy, A.J. Pindor, J. Staunton, G.M. Stocks and H. Winter, J. Phys F15:1337 (1985)

    Article  ADS  Google Scholar 

  16. see for example: A. Tasaki, K. Tagawa, E. Kita, S. Harada and T. Kusunose, Recording Tapes Using Iron Nitride Fine Powder, IEEE Trans. Magnetics MAG-17:3026 (1981)

    Google Scholar 

  17. D.H. Martin, “Magnetism in Solids”, M.I.T. Press, Cambridge, Mass (1967), p 122

    Google Scholar 

  18. G.E. Brodale, R.A. Fisher, N.E. Phillips and K. Matho, Approach to Magnetic Saturation in CuMn and AgMn, J. Magn. Magn. Mater, 54–57 194 (1986)

    Google Scholar 

  19. W.B. Pearson, “The Crystal Chemistry and Physics of Metals and Alloys”, Wiley-Interscience, New York (1972), pp 135–193

    Google Scholar 

  20. N. Mori and T. Mitsui, Localized Magnetic Moments and Pauling Valence in Manganese Metal, Some 3d-Transition Alloys and Intermetallic Compounds, J. Phys. Soc. Jpn, 25:82 (1968); Mori and Mitsui give references to the early work on Mn intermetallic compounds.

    Article  ADS  Google Scholar 

  21. L. Pauling in “Theory of Alloy Phases”, The American Society for Metals, Cleveland, Ohio (1956), p 220

    Google Scholar 

  22. B. J. Gellatly and J. L. Finney, Characterization of Models of Multicomponent Amorphous Metals: The Radical Alternative to the Voronoi Polyhedron, J. Non-Crystall. Solids 50:313 (1982)

    Article  ADS  Google Scholar 

  23. R.E. Watson and L.H. Bennett, “Alpha Manganese and the Frank Kasper Phases”, Scripta Metall. 19:535–538(1985)

    Google Scholar 

  24. Private communication R. E. Watson and L. H. Bennett

    Google Scholar 

  25. A. J. Bradley and J. Thewlis, Proc. Roy. Soc. A115:456 (1927);

    ADS  Google Scholar 

  26. T. Yamada, Magnetism and Crystal Symmetry of α-Mn, J. Phys. Soc. Jpn, 28:596–609 (1970)

    Article  ADS  Google Scholar 

  27. H.J. Goldschmidt, “Interstitial Alloys”, Plenum Press, New York (1967)

    Google Scholar 

  28. see for example: T.E. Madey, R. Stockbauer, S.A. Flodström, J.F. van der Veen, F.J. Himpsel and D.E. Eastman, Photon-stimulated desorption from covalently bonded species: CO absorbed on Ru(001), Phys. Rev. B23:6847 (1980)

    ADS  Google Scholar 

  29. C. S. Lent and P. I. Cohen, Quantitative analysis of streaks in reflection high-energy electron diffraction, Phys. Rev. B33:8329 (1986);

    ADS  Google Scholar 

  30. P. A. Maksym and J. L Beeby, Surface Sci. 110, 423 (1981);

    Article  ADS  Google Scholar 

  31. T. Kawamura and P. A. Maksym, Surface Sei. 161,12–24 (1985);

    Article  ADS  Google Scholar 

  32. J.B. Pendry, “Low Energy Electron Diffraction”, Academic, London (1975), Chap. 4

    Google Scholar 

  33. E. Bauer and J. H. van der Merwe, Structure and growth of crystalline superlattices: From monolayers to superlattice, Phys. Rev. B33:3657 (1986)

    ADS  Google Scholar 

  34. J.S. Kasper and B.W. Roberts, Antiferromagnetic Structure of α-Manganese and a Magnetic Structure Study of ß-Manganese, Phys. Rev. 101:537–544 (1956)

    Article  ADS  Google Scholar 

  35. A. Arrott, Antiferromagnetism in Metals in “Magnetism, Vol II B”, ed. G.T. Rado and H. Suhl, Academic Press, New York (1966) pp378–383

    Google Scholar 

  36. B. Heinrich, A.S. Arrott, J.F.Cochran, ST. Purcell, K.B. Urquhart, N. Alberding and C. Liu, Epitaxial Growth and Surface Science Techniques Applied to the Case of Ni Overlayers on Single Crystal Fe(001), this volume.

    Google Scholar 

  37. B.W. Veal and A.P. Paulikas, X-Ray-Photoelectron Final-State Screening in Transition-Metal Compounds, Phys. Rev. Lett. 51:1995–1998 (1983);

    Article  ADS  Google Scholar 

  38. B.W. Veal and A.P. Paulikas, Final-state screening and chemical shifts in photoelectron spectroscopy, Phys. Rev B 31:5399–5416 (1985)

    Article  ADS  Google Scholar 

  39. B.W. Veal, D.E. Ellis and D.J. Lam, Molecular-cluster study of core-level x-ray photoelectron spectra: Application to FeCI2, Phys. Rev. B 32:5391–5401 (1985)

    Article  ADS  Google Scholar 

  40. S. Doniachand M. Sunjic, J. Phys. C3:285(1970)

    Google Scholar 

  41. L.C. Davis and L.A. Feldkamp, Resonant photoemission involving super-Coster-Kronig transitions, Phys. Rev. B23:6239 (1981);

    ADS  Google Scholar 

  42. see also later references in R. Clauberg, W. Gudat, W. Radlik, and W. Braun, Phys. Rev. B31:1754 (1985)

    ADS  Google Scholar 

  43. F.R. McFeely, S.P. Kowalszcyk, L. Ley and D.A. Shirley, Solid State Commun.15:1051 (1974)

    Article  ADS  Google Scholar 

  44. C. D. Wagner, W. M. Riggs, L.E. Davis, J.F. Moulder and G.E. Mulenberg, “Handbook of X-Ray Photoeclectron Spectroscopy”, (Perkin Elmer Corporation, Physical Electronics Division, Eden Pairie, Minnesota (1980);

    Google Scholar 

  45. D. A. Shirley, R.L. Maartin, S.P. Kowalczyk, F.R. McFeeley and L. Ley, Phys. Rev. B15:’544 (1977)

    ADS  Google Scholar 

  46. Fitting of the susceptibility and specific heat yeild a value of 4μB, see for instance F.W. Smith, Phys. Rev. B14:241 (1976), but it appears that the Mn atom has 5μB and the conduction band electrons produce a negative spin clothing of 1μB that is sufficiently well coupled to show up in the entropy and susceptibility.

    ADS  Google Scholar 

  47. This subject is treated by D.C. Abbas, T.J. Aton and C.P. Slichter, Phys. Rev. B25:1474 (1982)

    ADS  Google Scholar 

  48. P. Steiner, F. Hüfner, N. Martinsson and B. Johansson, Core-Level Binding Energy Shifts in Dilute Alloys.Solid State Commun.37:73 (1981)

    Article  Google Scholar 

  49. E. von Meerwall and D.S. Schreiber, Local Magnetic Fields in Vanadium-Manganese Alloy System, Phys. Rev. B3:1 (1971)

    ADS  Google Scholar 

  50. A.S. Arrott, B. Heinrich, C. Liu and ST. Purcell, Deducing 3d Spin Polarization from 3s XPS in Ultrathin Metal Films grown by Molecular Beam Epitaxy, J. Magn. Magn. Mat. 54–57:1025 (1986)

    Google Scholar 

  51. B. Heinrich, C.Liu and A.S. Arrott, Very Thin Films of Mn, Ag, and Ag(Mn) Epitaxially Deposited on Ru, J. Vac. Sci. Techoi. B3:766 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arrott, A.S., Heinrich, B., Liu, C., Purcell, S.T. (1987). Increased Magnetic Moments in Transition Elements Through Epitaxy. In: Farrow, R.F.C., Parkin, S.S.P., Dobson, P.J., Neave, J.H., Arrott, A.S. (eds) Thin Film Growth Techniques for Low-Dimensional Structures. NATO ASI Series, vol 163. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9145-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9145-6_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9147-0

  • Online ISBN: 978-1-4684-9145-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics