Skip to main content

Reflection High-Energy Electron Diffraction Intensity Oscillation — An Effective Tool of Si and GexSi1-x Molecular Beam Epitaxy

  • Chapter
Thin Film Growth Techniques for Low-Dimensional Structures

Part of the book series: NATO ASI Series ((NSSB,volume 163))

Abstract

Molecular beam epitaxy (MBE) is becoming an important technique for growing epitaxial Si based films. The first advantage of Si MBE is a low growth temperature, usually in the range of 400 to 800°C, which is much lower than that required for conventional techniques. The lower growth temperature reduces diffusion of dopants. The second advantage is an excellent control of doping distribution which is essential for high speed VLSI. The third advantage is an ability to fabricate heterojunction and superlattice structures. Examples are GexSi1-x strained-layer super-lattices1–5, metal suicides6,7, Si on insulators8,9 and Si hetero-junctions with III–V compound semiconductors10,11. Among them, hetero-epitaxy of GexSi1-x/Si attracts much attention because it can add to conventional Si integrated circuits exciting possibilities of hetero-junction devices. Modulation-doped GexSi1-x/Si strained-layer hetero-structures showed two-dimensional carrier gas properties and enhanced mobilities for electron2 and hole3. Recently, n-channel4 and p-channel5 modulation-doped field effect transistors were successfully fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.C. Bean, L.C. Feldman, A.T. Fiory, S. Nakahara and I.K. Robinson, Gex-Si1−x/Si strained-layer superlattice grown by molecular beam epitaxy, J. Vac. Sci. & Technol. A2: 436 (1994).

    ADS  Google Scholar 

  2. H. Jorke and H.J. Herzog, Mobility enhancement in modulation-doped Si-Si1−xGex superlattice grown by molecular beam epitaxy, J. Electrochem. Soc. 133: 998 (1986).

    Article  ADS  Google Scholar 

  3. R. People, J.C. Bean and V.D. Lang, Modulation doping in Ge(x)Si(1−x)/Si strained layer heterostructures: effect of alloy layer thickness, doping set back, and cladding layer dopant concentration, J. Vac. Sci. & Technol. A3: 846 (1985).

    ADS  Google Scholar 

  4. H. Daembkes, H.J. Herzog, H. Jorke, H. Kibbel and E. Kaspar, The n-channel SiGe/Si modulation-doped field-effect transistor, IEEE trans. Electron Devices ED-33: 633 (1986).

    Article  ADS  Google Scholar 

  5. T.P. Pearsail and J.C. Bean, Enhancement- and depletion-mode p-channel GexSi1−x modulation-doped FET’s, IEEE Electron Device Lett. EDL-7: 308 (1986).

    Article  ADS  Google Scholar 

  6. S. Saito, H. Ishiwara and S. Furukawa, Double heteroepitaxy in the Si(111)/CoSi /Si structure, Appl. Phys. Lett. 37: 203 (1980).

    Article  ADS  Google Scholar 

  7. R.T. Tung, J.M. Gibson, and A.F.J. Levi, Growth of strained-layer semi-conductor-metal-semiconductor heterostructures, Appl. Phys. Lett. 48: 1264 (1986).

    Article  ADS  Google Scholar 

  8. H. Ishiwara and T. Asano, Silicon/insulator heteroepitaxial structures formed by vacuum deposition of CaF2 and Si, Appl. Phys. Lett. 40: 66 (1982).

    Article  ADS  Google Scholar 

  9. A. Munoz-Yague and C. Fontaine, Molecular beam epitaxy of insulating fluoride-semiconductor heterostructures, Surf. Sci. 168: 626 (1986).

    Article  ADS  Google Scholar 

  10. S. Nishi, H. Inomata, M. Akiyama and K. Kaminishi, Growth of single domain GaAs on 2-inch Si(100) substrate by molecular beam epitaxy, Jpn. J. Appl. Phys. 24: L391 (1985).

    Article  ADS  Google Scholar 

  11. R. Fischer and H. Morkoc, III–V semiconductors on Si substrates: new direction for heterojunction electronics, Solid State Electron. 29: 269 (1986).

    Article  ADS  Google Scholar 

  12. J.J. Harris, B.A. Joyce and P.J. Dobson, Oscillations in the surface structure of Sn-doped GaAs during growth by MBE, Surf. Sci. 103: L90 (1981).

    Article  Google Scholar 

  13. C.E.C. Wood, RED intensity oscillations during MBE of GaAs, Surf. Sci. 108: L441 (1981).

    Article  ADS  Google Scholar 

  14. J.H. Neave, B.A. Joyce, P.J. Dobson and N. Norton, Dynamics of film growth of GaAs by MBE from Rheed observation, Appl. Phys. A31: 1 (1983).

    ADS  Google Scholar 

  15. J.M. Van Hove, C.S. Lent, P.R. Pukite and P.I. Cohen, Damped oscillation in reflection high-energy electron diffraction during GaAs MBS, J. Vac. Sci. & Technol. B1: 741 (1983).

    Article  Google Scholar 

  16. T. Sakamoto, H. Funabashi, K. Ohta, T. Nakagawa, N.J. Kawai, T. Kojima and Y. Bando, Well defined superlattice structures made by phase-locked epitaxy using RHEED intensity oscillation, Superlattices and Micro-structures 1: 347 (1985).

    Article  ADS  Google Scholar 

  17. T. Sakamoto, H. Funabashi, K. Ohta, T. Nakagawa, N.J. Kawai and T. Kojima, Phase-locked epitaxy using RHEED intensity oscillation, Jpn. J. Appl. Phys. 23: L657 (1984).

    Article  ADS  Google Scholar 

  18. T. Sakamoto, N.J. Kawai, T. Nakagawa, K. Ohta and T. Kojima, Intensity oscillations of reflection high-energy electron diffraction during silicon molecular beam epitaxial growth, Appl. Phys. Lett. 47: 617 (1985).

    Article  ADS  Google Scholar 

  19. T. Sakamoto and G. Hashiguchi, Si(001)−2×1 single-domain structure obtained by high temperature annealing, Jpn. J. Appl. Phys. 25: L78 (1986).

    Article  ADS  Google Scholar 

  20. T. Sakamoto, T. Kawamura and G. Hashiguchi, Observation of alternating reconstructions of silicon(001) 2×1 and 1×2 using reflection high-energy electron diffraction during molecular beam epitaxy, Appl. Phys. Lett. 48: 1612 (1986).

    Article  ADS  Google Scholar 

  21. K. Sakamoto, T. Sakamoto, S. Nagao, G. Hashiguchi, K. Kuniyoshi and Y. Bando, Reflection high-energy electron diffraction intensity oscillations during GexSi1−x MBE growth on Si(001) substrates, submitted to Jpn. J. Appl. Phys.

    Google Scholar 

  22. A. Ishizuka and Y. Shiraki, Low temperature surface cleaning of silicon and its application to silicon MBE, J. Electrochem. Soc. 133: 666 (1986).

    Article  Google Scholar 

  23. K. Kugimiya, Y. Shirafuji and M. Matsuo, Si-beam radiation cleaning in molecular-beam epitaxy, Jpn. J. Appl. Phys. 24: 564. (1985).

    Article  ADS  Google Scholar 

  24. R. Kaplan, LEED study of the stepped surface of vicinal Si(001), Surf. Sci. 93: 145 (1980).

    Article  ADS  Google Scholar 

  25. N. Aizaki and T. Tatsuni, In situ RHEED observation of selective diminution at Si(001)−2×1 superlattice spots during MBE, Surf. Sci. 174: 658 (1986).

    Article  ADS  Google Scholar 

  26. T. Kawamura, P.A. Maksym and Iijima, Calculation of RHEED intensities from stepped surfaces, Surf. Sci. 148: L671 (1984).

    Article  Google Scholar 

  27. T. Kawamura and P.A. Maksym, RHEED from stepped surfaces and its relation to RHEED intensity oscillations observed during MBB, Surf. Sci. 161: 12 (1985).

    Article  ADS  Google Scholar 

  28. T. Kawamura, T. Sakamoto and K. Ohta, Origin of azimuthal effect of RHEED intensity oscillations observed during MBE, Surf. Sci. 171: L409 (1986).

    Article  Google Scholar 

  29. H. Kroemer, K.J. Polasko and S.C. Wright, On the (110) orientation as the preferred orientation for the molecular beam epitaxial growth of GaAs on Ge, GaP on Si and similar zincblende-on-diamond systems, Appl. Phys. Lett. 36: 763 (1980).

    Article  ADS  Google Scholar 

  30. N. Otsuka, C. Choi, L.A. Kolodziejski, R.L. Gunshor, R. Fischer, C.K. Peng, H. Morkoc, Y. Nakamura and S. Nagakura, Study of heteroepitaxial interfaces by atomic resolution electron microscopy, J. Vac. Sci. & Technol. 134: 896 (1986).

    Article  Google Scholar 

  31. T. Kojima, K. Ohta, T. Sakamoto and T. Nakagawa: Preprints of the 33rd Spring Meeting of Japan Society of Applied Physics and of the Related Societies, Chiba, April, 1986, 4p-V-12.

    Google Scholar 

  32. M. Asai, H. Ueba and C. Tatsuyama, Heteroepitaxial growth of Ge films on the Si(100)−2×1 surface, J. Appl. Phys 58: 2577(1985).

    Article  ADS  Google Scholar 

  33. J.H. Van der Merwe, Crystal interfaces, part II. finite overgrowth, J. Appl. Phys 34: 123 (1962).

    Article  Google Scholar 

  34. J.W. Matthews and A.E. Blakeslee, Defects in epitaxial multilayers I. misfit dislocations, J. Cryst. Growth 27: 118 (1974).

    ADS  Google Scholar 

  35. R. People and J.C. Bean, Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained layer heterostructures, Appl. Phys. Lett. 47: 322 (1986), [Erratum; 49: 229 (1986)].

    Article  ADS  Google Scholar 

  36. T. Tatsumi and N. Aizaki: Preprints of the 33rd Spring Meeting of Japan Society of Applied Physics and of the Related Societies, Chiba, April, 1986, 4P-V-14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sakamoto, T., Sakamoto, K., Nagao, S., Hashiguchi, G., Kuniyoshi, K., Bando, Y. (1987). Reflection High-Energy Electron Diffraction Intensity Oscillation — An Effective Tool of Si and GexSi1-x Molecular Beam Epitaxy. In: Farrow, R.F.C., Parkin, S.S.P., Dobson, P.J., Neave, J.H., Arrott, A.S. (eds) Thin Film Growth Techniques for Low-Dimensional Structures. NATO ASI Series, vol 163. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9145-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9145-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9147-0

  • Online ISBN: 978-1-4684-9145-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics