Skip to main content

Application of Pellicles in Clean Surface Technology

  • Chapter
Book cover Treatise on Clean Surface Technology
  • 234 Accesses

Abstract

The protection of optically critical surfaces against the effects of particle contamination by means of transparent barriers has been a long-established approach applied to a broad range of cases, ranging from combustion monitoring(1) to space-borne(2) sensing. Such protective transparent barriers can take the form of cleanable windows, as in the case of the rather prosaic automotive windshield/wiper, or of flow screens, typified by the clean-air curtains incorporated in several types of gas(1) and aerosol(3) monitoring instruments.

Shadow is the diminution of light by the intervention of an opaque body. Shadow is the counterpart of the luminous rays which are cut off by an opaque body.

A shadow may be infinitely dark, and also of infinite degrees of absence of darkness.

Leonardo da Vinci

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Tomic, New Concepts of Optical Windows in Process Streams, GCA Final Report on U.S. Environmental Protection Agency Contract No. 68–02-3168 Work Assignment No. 109 (April, 1984), 25 pp. Available from GCA/Technology Div., Bedford, Mass.

    Google Scholar 

  2. S.A. Hoenig, Electrostatic dust protection for optical elements, Appl. Optics27(3), 565–569 (1982).

    Article  Google Scholar 

  3. P. Lilienfeld, High concentration dust mass monitor, Particulate Sci. Technol.7, 91–100 (1983).

    Article  Google Scholar 

  4. K. Jain, Laser applications in semiconductor microlithography, Lasers and Applications2(9), 49–56 (1983).

    Google Scholar 

  5. G. Pircher, Submicron lithography, in: Proceedings of 9th International Vacuum Conference and 5th International Conference on Solid Surfaces, Madrid (Sept. 26–Oct. 1, 1983), pp. 427–444.

    Google Scholar 

  6. D. J. Elliott, Integrated Circuit Fabrication Technology, McGraw-Hill Book Company, New York (1982).

    Google Scholar 

  7. J. Roussel, Step and repeat wafer imaging, SPIE Proceedings on Developments in Semiconductor Microlithography III135, 30–35 (1978).

    Google Scholar 

  8. G. L. Resor and A. C. Tobey, The role of direct step-on-the-wafer in microlithography strategy for the 80’s, Solid State Technol.22(9), 101–108 (1979).

    Google Scholar 

  9. V. Miller and H. L. Stove, Submicron optical lithography: I-Line wafer stepper and photoresist technology, Solid State Technol.28(1), 127–136 (1985).

    Article  CAS  Google Scholar 

  10. H. B. Lovering, Optics in Microelectronics, Kodak Publication G-45 (1975), pp. 66–71.

    Google Scholar 

  11. T. L. Hershey, Pellicles on wafer steppers with lenticular optics, Solid State Technol.26(7), 89–94 (1983).

    Google Scholar 

  12. A. C. Tobey, Semiconductor microlithography through the eighties, Microelectronic Manufact. Testing8(4), 19–20 (1985).

    Google Scholar 

  13. D. J. Elliott, Integrated Circuit Mask Technology, McGraw-Hill Book Company, New York (1985).

    Google Scholar 

  14. R. M. Shoho, Fabrication of microelectronics reticles, Solid State Technol.22(2), 75–79 (1979).

    CAS  Google Scholar 

  15. J. J. Greed, Photomask and reticle making for VLSI, Microelectronic Manufact. Testing6(7), 22–24 (1983).

    Google Scholar 

  16. P. H. Singer, Photomask and reticle defect detection, Semiconductor International8(4), 66–73 (1985).

    Google Scholar 

  17. C. M. Osburn, Aerosol control in semiconductor manufacturing, paper presented at the First International Aerosol Conference, Minneapolis, Minn. (September 17–21, 1984). Extended abstract in: Aerosols—Science, Technology and Industrial Applications of Airborne Particles (B. Y. H. Liu, D. Y. H. Pui, and H. J. Fissan, eds.), p. 673, Elsevier, New York (1984).

    Google Scholar 

  18. P. S. Burggraaf, Reduction reticle trends: Emphasizing 5 ×, Semiconductor International 7(8), 58–63 (1984).

    Google Scholar 

  19. G. Abraham and G. Bergasse, Projection Printing System with an Improved Mask Configuration, U.S. Patent 04063812 (December 20, 1977).

    Google Scholar 

  20. V. Shea and W. J. Wojcik, Pellicle Cover for Projection Printing System, U.S. Patent 04131363 (December 26, 1978).

    Google Scholar 

  21. W. H. Steel, Etude des effets combinés des aberrations et d’une obturation centrale de la pupille sur le contraste des images optiques, Revue Optique32(1), 4–26 (1953).

    Google Scholar 

  22. W. H. Steel, The defocused image of sinusoidal gratings, Optica Acta3(2), 65–74 (1956).

    Article  Google Scholar 

  23. H. H. Hopkins, The frequency response of a defocused system, Proc. Royal Soc. A231, 91–103 (1955).

    Article  Google Scholar 

  24. A. Flamholz, An analysis of pellicle parameters for step-and-repeat projection, Proceedings of SPIE on Optical Microlithography III470, 138–146 (1984).

    Google Scholar 

  25. R. Hershel, Pellicle protection of IC masks, Semiconductor International4(8), 97–106 (1981).

    Google Scholar 

  26. R. Winn and R. Turnager, Pellicles—an industry overview, Solid State Technol.25(6), 41–43 (1982).

    Google Scholar 

  27. R. Iscoff, Pellicles—a means to increase die yield, Semiconductor International5(9), 95–108 (1982).

    Google Scholar 

  28. T. A. Brunner, C. P. Ausschnitt, and D. L. Duly, Pellicle mask protection for 1:1 projection lithography, Solid State Technol.26(5), 135–143 (1983).

    CAS  Google Scholar 

  29. A. Rangappan and C. Kao, Yield improvement with pellicalised masks in projection printing technology, Proceedings of SPIE on Optical Microlithography—Technology for the Mid-1980s334, 52–57 (1982).

    Google Scholar 

  30. R. Iscoff, Pellicles 1985: An update, Semiconductor International8(4), 110–115 (1985).

    Google Scholar 

  31. P. S. Burggraaf, Wafer steppers: Considering the issues, Semiconductor International5(4), 57–78 (1982).

    Google Scholar 

  32. R. Turnage and R. Winn, Attaching pellicles to photomasks in a production environment, Microelectronic Manufact. Testing6(1), 31–32 (1983).

    Google Scholar 

  33. I. E. Ward and D. L. Duly, A broadband, deep UV pellicle for 1:1 scanning projection and step and repeat lithography, Proceedings of SPIE on Optical Microlithography III470, 147–156 (1984).

    CAS  Google Scholar 

  34. J. Lent and S. Swayne, The Implementation of a Pellicle Mask Protection System into an Established Production Area, Kodak Publication G-136 (1982), pp. 93–99.

    Google Scholar 

  35. J. Lent, Pellicle mask protection for 1:1 projection aligners, Motorola Technical Developments2, 22–23 (1982).

    Google Scholar 

  36. K. W. Edmark and G. Quackenbos, An American assessment of Japanese contamination-control technology, Microcontamination2(5), 47–53, 125 (1984).

    Google Scholar 

  37. R. L. Ruddell, Resist and mask trends, Semiconductor International7(7), 104–108 (1984).

    Google Scholar 

  38. I. E. Ward and P. M. Papoojian, Pellicle Compositions and Pellicles Thereof for Projection Printing, U.S. Patent 04499231 (February 12, 1985).

    Google Scholar 

  39. I. E. Ward, Polyvinyl Butyrate Pellicle Compositions and Pellicles Thereof for Projection Printing, U.S. Patent 04482591 (November 13, 1984).

    Google Scholar 

  40. I. E. Ward, Pellicle Compositions and Pellicles Thereof for Projection Printing, U.S. Patent 04476172 (October 9, 1984).

    Google Scholar 

  41. Micropel Products Bulletin, EKC Technology, Inc., Hayward, Calif.

    Google Scholar 

  42. Advanced Semiconductor Products Data Sheet No. 109, Santa Cruz, Calif. (June 9, 1982).

    Google Scholar 

  43. D. L. Duly, H. Windischmann, and W. D. Buckley, Method of Fabricating a Pellicle Cover for Projection Printing System, U.S. Patent 4465759 (August 14, 1984).

    Google Scholar 

  44. P. R. Carafe and J. R. Kraycir, Photomask pellicle support ring design, IBM Technical Disclosure Bulletin27(1B), 769 (1984).

    Google Scholar 

  45. D. W. Fisher, V. Shea, P. Trongo, and W. Wojcik, Transparent ring for low angle pellicle inspection, IBM Technical Disclosure Bulletin23(2), 526 (July, 1980).

    Google Scholar 

  46. C. M. Walwyn and D. E. Bohonos, Pellicle Mounting Fixture, U.S. Patent 04443098 (April 17, 1984).

    Google Scholar 

  47. A. B. Patel and E. Wojciekfsky, Mounting of mask with pellicle, IBM Technical Disclosure Bulletin26(8), 4036–4037 (1984).

    Google Scholar 

  48. Y. Yen, Dustfree Packaging Container and Method, U.S. Patent 04470508 (September 11, 1984).

    Google Scholar 

  49. Tau Laboratories, Inc., Products Bulletin (1982), Riddings, Derby, England.

    Google Scholar 

  50. A. K. M. Miller and R. Mason, Container for Masks and Pellicles, U.S. Patent 4511038 (April 16, 1985).

    Google Scholar 

  51. J. W. Conant, Pellicle Ring Removal Method and Tool, U.S. Patent 04255216 (March 10, 1981).

    Google Scholar 

  52. P. Chipman, Qualifying reduction reticles, Semiconductor International7(8), 68–73 (1984).

    Google Scholar 

  53. P. S. Burggraaf, 1 x Mask and reticle technology, Semiconductor International6(3), 40–45 (1983).

    Google Scholar 

  54. R. A. Simpson and D. E. Davis, Detecting submicron pattern defects on optical photomasks using an enhanced EL-3 electron-beam lithography tool, Proceedings of SPIE on Optical Microlithography—Technology for the Mid-1980s334, 230–237 (1982).

    Google Scholar 

  55. G. Quackenbos, S. Broude, and E. Chase, Automatic detection and quantification of contaminants on reticles for semiconductor microlithography, Proceedings of SPIE on Integrated Circuit Metrology342, 35–43 (1982).

    Google Scholar 

  56. M. Shiba, M. Koizumi, and T. Katsuta, Automatic inspection of contaminants on reticles, Proceedings of SPIE on Optical Microlithography III470, 233–239 (1984).

    Google Scholar 

  57. A. Tanimoto and K. Imamura, Reticle contamination monitor for a wafer stepper, Proceedings of SPIE on Optical Microlithography III470, 242–249 (1984).

    Google Scholar 

  58. K. L. Mittal, ed., Surface Contamination: Genesis, Detection and Control, Vols. 1 and 2, Plenum Press, New York (1979).

    Google Scholar 

  59. P. Lilienfeld, Optical detection of particle contamination on surfaces—a Review, Aerosol Sci. Technol.5(2), 145–165 (1986).

    Article  CAS  Google Scholar 

  60. L. McVay and P. Lilienfeld, Automatic Detector for Microscopic Dust on Large-Area Optically Unpolished Surfaces, U.S. Patent No. 4402607 (September 6, 1983).

    Google Scholar 

  61. E. T. Chase, S. V. Broude, and G. S. Quackenbos, Surface Inspection Apparatus, U.S. Serial No. 682794 patent pending (filed December 18, 1984).

    Google Scholar 

  62. R. V. Asselt and G. Brooks, Technique for Inspecting Photomasks with Pellicles Attached, Kodak Publication G-136 (1982), pp. 158–162.

    Google Scholar 

  63. C. P. Ausschnitt, T. A. Brunner, and S. C. Yang, Application of wafer probe techniques to the evaluation of projection printers, Proceedings of SPIE on Optical Microlithography—Technology for the Mid-1980s334, 17–25 (1982).

    Google Scholar 

  64. G. Bouwhuis and J. J. M. Braat, Video disk player optics, Appl. Optics17(13), 1993–2000 (1978).

    Article  CAS  Google Scholar 

  65. G. C. Kenney, D. Y. K. Low, R. McFarlane, A. Y. Chan, J. S. Nadan, T. R. Kohler, J. G. Wagner, and F. Zernike, An optical disk replaces 25 mag tapes, IEEE Spectrum16(2), 33–38 (1979).

    Google Scholar 

  66. D. C. Kowalski, D. J. Curry, L. T. Klinger, and G. Knight, Multichannel digital optical disk memory system, Optical Eng.22(4), 464–472 (1983).

    Google Scholar 

  67. R. McFarlane, G. Blom, A. Chan, S. Chandra, E. Frankfort, G. Kenney, D. Low, and J. Nadan, Digital optical recorders at Mbit/s data rate, Optical Eng.21(5), 913–922 (1982).

    Google Scholar 

  68. S. Miyaoka, Digital audio is compact and rugged, IEEE Spectrum21(3), 35–39 (1984).

    Google Scholar 

  69. J. Hecht, Optical memory for personal computers, Lasers and Applications4(8), 71–76 (1985).

    Google Scholar 

  70. H. Brody, Materials for optical storage: A state-of-the-art survey, Laser Focus17(8), 47–52 (1981).

    Google Scholar 

  71. M. Hartmann, J. Braat, and B. Jacobs, Erasable magneto-optical recording media, IEEE Trans. Magn.20(5), 1013–1018 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Lilienfeld, P. (1987). Application of Pellicles in Clean Surface Technology. In: Mittal, K.L. (eds) Treatise on Clean Surface Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9126-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9126-5_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9128-9

  • Online ISBN: 978-1-4684-9126-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics