Skip to main content

Redispersion of Indoor Surface Contamination and Its Implications

  • Chapter

Abstract

There are many industrial and laboratory processes that can produce contamination. This is true even when processes are partially or totally enclosed or when types of control other than enclosure are used. Worker exposure is possible when contamination is produced and escapes from primary containment. Once contamination has been produced, housekeeping can yield an environment in which exposure can take place by resuspension. Bad housekeeping, by imparting too much energy to the deposited contamination, can lead to resuspension immediately; it can also leave substantial residual contamination that may be reentrained subsequently. Even good housekeeping is likely to leave behind on surfaces residual contamination that may be reentrained. In any event, whatever contamination remains is available for further resuspension. It is this “secondary” exposure, rather than the exposure that occurs when the contamination is initially produced, that we are interested in here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. M. Prudden, Dust and Its Dangers, G. P. Putnam’s Sons, New York (1905).

    Google Scholar 

  2. J. Mishima, A Review of Research on Plutonium Releases during Overheating and Fires, Hanford Atomic Products Operation Report HW-83668, U.S. Atomic Energy Commission, Washington, D.C. (1964).

    Google Scholar 

  3. G. A. Sehmel, Particle resuspension: A review, Environ. Int. 4, 107–127 (1980).

    Article  Google Scholar 

  4. E. B. Sansone and M. W. Slein, Redispersion of indoor surface contamination: A review, J. Haz. Mater. 2, 347–361 (1977/78).

    Article  Google Scholar 

  5. B. R. Fish, ed., Surface Contamination, Pergamon Press, New York (1967).

    Google Scholar 

  6. Society for Radiological Protection, International Symposium on the Radiological Protection of the Worker by the Design and Control of His Environment, Society for Radiological Protection, Bournemouth, England (18–22 April 1966).

    Google Scholar 

  7. K. L. Mittal, ed., Surface Contamination: Genesis, Detection, and Control, Plenum Press, New York (1979).

    Google Scholar 

  8. N. A. Fuchs, The Mechanics of Aerosols, Pergamon Press, New York (1964).

    Google Scholar 

  9. H. L. Green and W. R. Lane, Particulate Clouds: Dusts, Smokes and Mists, 2nd Ed., Van Nostrand, New York (1964).

    Google Scholar 

  10. C. N. Davies, ed., Aerosol Science, Academic Press, New York (1966).

    Google Scholar 

  11. S. K. Friedlander, Smoke, Dust and Haze: Fundamentals of Aerosol Behavior, John Wiley and Sons, New York (1977).

    Google Scholar 

  12. A. C. Chamberlain and G. R. Stanbury, The Hazard from Inhaled Fission Products in Rescue Operations after an Atomic Bomb Explosion, Atomic Energy Research Establishment Report HP/R 737, Harwell, United Kingdom (June, 1951).

    Google Scholar 

  13. H. J. Dunster, Contamination of surfaces by radioactive materials: The derivation of maximum permissible levels, Atomics 6, 223–239 (1955).

    Google Scholar 

  14. J. C. Bailey and R. C. Rohr, Air-Borne Contamination Resulting from Transferable Contamination on Surfaces: Report K-1088, U.S. Atomic Energy Commission, Washington, D.C. (1953).

    Google Scholar 

  15. M. Eisenbud, H. Blatz, and E. V. Barry, How important is surface contamination? Nucleonics 12, 12–15 (1954).

    CAS  Google Scholar 

  16. W. L. Utnage, in: Proceedings of the Symposium on Occupational Health Experience and Practices in the Uranium Industry: Report HASL-58, U.S. Atomic Energy Commission, Washington, D.C. (1959), pp. 147–150.

    Google Scholar 

  17. A. F. Becher, in: Proceedings of the Symposium on Occupational Health Experience and Practices in the Uranium Industry: Report HASL-58, U.S. Atomic Energy Commission, Washington, D.C. (1959), pp. 151–156.

    Google Scholar 

  18. E. C. Hyatt, H. F. Schulte, R. N. Mitchell, and E. P. Tangman, Jr., Beryllium: Hazard evaluation and control in research and development operations, A.M.A. Arch. Indust. Health 19, 211–220 (1959).

    CAS  Google Scholar 

  19. N. B. Schultz and A. G. Becher, Correlation of uranium alpha surface contamination, airborne concentrations, and urinary excretion rates, Health Phys. 9, 901–909 (1963).

    Article  CAS  Google Scholar 

  20. I. S. Jones, S. F. Pond, and D. C. Stevens, in: Society for Radiological Protection, International Symposium on the Radiological Protection of the Worker by the Design and Control of His Environment, Bournemouth, England (18–22 April 1966).

    Google Scholar 

  21. B. Tagg, in: Society for Radiological Protection, International Symposium on the Radiological Protection of the Worker by the Design and Control of His Environment, Bournemouth, England (18–22 April 1966).

    Google Scholar 

  22. O. M. Lidwell, in: Proceedings of the 17th Symposium of the Society for General Microbiology (P. H. Gregory and J. L. Monteith, eds.), pp. 116–137, Cambridge University Press, London (1967).

    Google Scholar 

  23. B. R. Fish, R. L. Walker, G. W. Royster, Jr., and J. L. Thompson, in: Surface Contamination (B. R. Fish, ed.), pp. 75–81, Pergamon Press, New York (1967).

    Google Scholar 

  24. I. S. Jones and S. F. Pond, in: Surface Contamination (B. R. Fish, ed.), pp. 83–92, Pergamon Press, New York (1967).

    Google Scholar 

  25. R. T. Brunskill, in: Surface Contamination (B. R. Fish, ed.), pp. 93–105, Pergamon Press, New York (1967).

    Google Scholar 

  26. H. Glauberman, W. R. Bootmann, and A. J. Breslin, in: Surface Contamination (B. R. Fish, ed.), pp. 169–178, Pergamon Press, New York (1967).

    Google Scholar 

  27. K. Kereluk, R. Meyer, and A. J. Pilgrim, in: Surface Contamination (B. R. Fish, ed.), pp. 333–344, Pergamon Press, New York (1967).

    Google Scholar 

  28. R. N. Mitchell and B. C. Eutsler, in: Surface Contamination (B. R. Fish, ed.), pp. 349–352, Pergamon Press, New York (1967).

    Google Scholar 

  29. C. Cortissone, O. Ilari, G. Lembo, and A. Moccaldi, La contaminazione dell’aria risultante da risospensione di contaminazione di superficie [Atmospheric contamination from resuspension of surface contamination], Minerva Fisiconucleare, Giornal di Fisica Sanitaria Protezione Radiazione 12, 63–79 (1968).

    CAS  Google Scholar 

  30. N. N. Khvostov and M.S. Kostyakov, Hygienic significance of radioactive contamination of working surfaces, Hyg. Sanit. (English ed.) 34, 43–48 (1969).

    Google Scholar 

  31. R. F. Carter, The Measurement of Asbestos Dust Levels in a Workshop Environment, United Kingdom Atomic Energy Authority A.W.R.E. Report No. 028/70, Aldermaston, United Kingdom (1970).

    Google Scholar 

  32. J. Shapiro, Tests for the evaluation of airborne hazards from radioactive surface contamination, Health Phys. 19, 501–510 (1970).

    Article  CAS  Google Scholar 

  33. S. M. Gorodinsky, D. S. Goldstein, U. Ya. Margulis, M. I. Rokhlin, V. A. Rikunov, Yu. A. Sevostiyanov, M. A. Sobolevsky, and V. A. Cherednichenko, Experimental determination of the coefficient of passage of radioactive substances from contaminated surfaces into the air of working premises (in Russian), Gig. Sanit. 37, 46–50 (1972).

    Google Scholar 

  34. G. F. Kovygin, Certain problems of substantiating the permissible densities of beryllium surface contamination (in Russian), Gig. Sanit. 39, 43–45 (1974).

    Google Scholar 

  35. A. Hambraeus, S. Bengtsson, and G. Laurell, Bacterial contamination in a modern operating suite. 3: Importance of floor contamination as a source of airborne bacteria, J. Hyg., Camb. 80, 169–174 (1978).

    Article  CAS  Google Scholar 

  36. A. D. Wrixon, G. S. Linsley, K. C. Binns, and D. F. White, Derived Limits for Surface Contamination, NRPB-DL2, National Radiological Protection Board, Harwell, Didcot, Oxon, United Kingdom (1979).

    Google Scholar 

  37. M. J. Dunn and P. B. Dunscombe, Levels of airborne 125I during protein labelling, Radiation Protection Dosimetry 1(2), 143–146 (1981).

    CAS  Google Scholar 

  38. E. V. Barry and L. R. Solon, Radioactive contamination sampling by smears and adhesive disks, Nucleonics 11, 60–61 (1953).

    CAS  Google Scholar 

  39. S. B. Thomas, E. Griffiths, K. Elson, and N. B. Bebbington, The suitability of swab tests for determining the bacterial content of dairy equipment, Dairy Industries 20, 41–43 (1955).

    Google Scholar 

  40. R. Angelotti, M. J. Foter, K. A. Busch, and K. H. Lewis, A comparative evaluation of methods for determining the bacterial contamination of surfaces, Food Res. 23, 175–185 (1958).

    Google Scholar 

  41. Y. Yoshida, Y. Sasaki, M. Murata, S. Izawa, and Y. Ikezawa, Experiments on measuring the density of surface contamination by the smear survey method (in Japanese), Nihon Genshiryoku Gakkaishi 6, 77–81 (1964).

    Google Scholar 

  42. K. Coretti, Über den Wert einiger bakteriologischer Methoden zur Ermittlung der Betriebshygiene in Fleischwarenbetrieben [The value of some bacteriological methods of determining the state of hygiene in meat processing plants], Fleischwirtschaft 46, 139–141, 144, 145 (1966).

    Google Scholar 

  43. A. J. Breslin, A. C. George, and P. C. LeClare, in: Society for Radiological Protection, International Symposium on the Radiological Protection of the Worker by the Design and Control of His Environment, Bournemouth, England (18–22 April 1966).

    Google Scholar 

  44. R. T. Brunskill and D. J. Fletcher, in: Society for Radiological Protection, International Symposium on the Radiological Protection of the Worker by the Design and Control of His Environment, Bournemouth, England (18–22 April 1966).

    Google Scholar 

  45. H. Blatz and M. Eisenbud, in: Surface Contamination (B. R. Fish, ed.), pp. 163–167, Pergamon Press, New York (1967).

    Google Scholar 

  46. J. R. Prince and C. H. Wang, in: Surface Contamination (B. R. Fish, ed.), pp. 179–183, Pergamon Press, New York (1967).

    Google Scholar 

  47. G. W. Royster, Jr., and B. R. Fish, in: Surface Contamination (B. R. Fish, ed.), pp. 201–207, Pergamon Press, New York (1967).

    Google Scholar 

  48. J. D. Eakins and W. P. Hutchinson, The Radiological Hazard from Tritium Sorbed on Metal Surfaces. Part 2: The Estimation of the Level of Tritium Contamination on Metal Surfaces by Smearing, Atomic Energy Research Establishment—R 5988, Health Physics and Medical Division, United Kingdom Atomic Energy Authority Research Group, Atomic Energy Research Establishment, Harwell, United Kingdom (1969).

    Google Scholar 

  49. A. Koizumi, Y. Bessho, T. Kikuchi, and Y. Yoshizawa, Measurement of tritium surface contamination by liquid scintillation counting of smear paper, Radioisotopes 24, 431–433 (1975).

    Article  CAS  Google Scholar 

  50. R. W. Weeks, Jr., B. J. Dean, and S. K. Yasuda, Detection limits of chemical spot tests toward certain carcinogens on metal, painted, and concrete surfaces, Anal. Chem. 48, 2227–2233 (1976).

    Article  CAS  Google Scholar 

  51. J. E. Davis, D. C. Staiff, L. C. Butler, and J. F. Armstrong, Persistence of methyl and ethyl parathion following spillage on concrete surfaces, Bull. Environ. Contam. Toxicol. 18, 18–25 (1977).

    Article  CAS  Google Scholar 

  52. I. Anzai and T. Kikuchi, A new monitoring technique of surface contamination—The test surface method, Health Phys. 34, 271–273 (1978).

    CAS  Google Scholar 

  53. J. W. Sayre and M. D. Katzel, Household surface lead dust: Its accumulation in vacant homes, Environ. Health Perspec. 29, 179–182 (1979).

    Article  CAS  Google Scholar 

  54. J. J. Vostal, E. Taves, J. W. Sayre, and E. Charney, Lead analysis of house dust: A method for the detection of another source of lead exposure in inner city children, Environ. Health Perspec.7, 91–97 (1974).

    CAS  Google Scholar 

  55. P. Hartemann, C. Demange, M. F. Blech, and E. Thofern, in: Proceedings of the 5th International Symposium on Contamination Control, pp. 151–156, Verein Deutscher Ingenieure-Verlag GmbH, Düsseldorf, Germany (1980).

    Google Scholar 

  56. M. Takiue, Simple and rapid measurement of α-rays on smear samples using air luminescence, Health Phys. 39, 29–32 (1980).

    Article  CAS  Google Scholar 

  57. J. R. Puleo and L. E. Kirschner, Speedy acquisition of surface-contamination samples, Natl. Aeronaut. Space Admin. Tech. Briefs 6(2), 174 (1981).

    Google Scholar 

  58. J. D. Sinclair, Paper extraction for sampling inorganic salts on surfaces, Anal. Chem. 54, 1529–1533 (1982).

    Article  CAS  Google Scholar 

  59. C. Chavalitnitikul and L. Levin, A laboratory evaluation of wipe testing based on lead oxide surface contamination, Am. Ind. Hyg. Assoc. J. 45, 311–317 (1984).

    Article  CAS  Google Scholar 

  60. G. A. J. Ayliffe, B. J. Collins, E. J. L. Lowbury, J. R. Babb, and H. A. Lilly, Ward floors and other surfaces as reservoirs of hospital infection, J. Hyg., Camb. 65, 515–536 (1967).

    Article  CAS  Google Scholar 

  61. D. Vesley and G. S. Michaelsen, in: Surface Contamination (B. R. Fish, ed.), pp. 321–331, Pergamon Press, New York (1967).

    Google Scholar 

  62. J. Weber, in: Society for Radiological Protection, International Symposium on the Radiological Protection of the Worker by the Design and Control of His Environment, Bournemouth, England (18–22 April 1966).

    Google Scholar 

  63. J. J. Cohen and R. N. Kusian, in: Surface Contamination (B. R. Fish, ed.), pp. 345–348, Pergamon Press, New York (1967).

    Google Scholar 

  64. W. J. Whitfield, in: Surface Contamination: Genesis, Detection, and Control (K. L. Mittal, ed.), pp. 73–81, Plenum Press, New York (1979).

    Google Scholar 

  65. J. Alzona, B. L. Cohen, H. Rudolph, H. N. Jow, and J. O. Frohliger, Indoor-outdoor relationships for airborne particulate matter of outdoor origin, Atmos. Environ. 13, 55–60 (1979).

    Article  CAS  Google Scholar 

  66. Th. Franke and W. Hunzinger, in: Diagnosis and Treatment of Deposited Radionuclides (H. A. Kornberg and W. D. Norwood, eds.), pp. 457–459, Excerpta Medica Foundation, Amsterdam (1968).

    Google Scholar 

  67. Th. Franke, G. Herrmann, and W. Hunzinger, in: Proceedings of the First International Congress of Radiation Protection (W. S. Snyder, H. H. Abee, L. K. Burton, R. Maushart, A. Benco, F. Duhamed, and B. M. Whearley, eds.) Vol. 2, pp. 1401–1406, Pergamon Press, London (1968).

    Google Scholar 

  68. A. Brodsky, Experience with intakes of tritium from various processes, Health Phys. 33, 94–98 (1977).

    CAS  Google Scholar 

  69. A. Brodsky, Resuspension factors and probabilities of intake of material in process (or “Is 10-6 a magic number in health physics?”), Health Phys. 39, 992–1000 (1980).

    CAS  Google Scholar 

  70. S. L. Sutter, J. W. Johnston, and J. Mishima, Investigation of accident-generated aerosols: Releases from free fall spills, Am. Ind. Hyg. Assoc. J. 43, 540–543 (1982).

    Article  CAS  Google Scholar 

  71. H. Lannefors and H.-C. Hansson, Indoor/outdoor elemental concentration relationships at a nursery school, Nucl. Instrum. Meth. 181, 441–444 (1981).

    Article  CAS  Google Scholar 

  72. E. B. Sansone, A. M. Losikoff, and R. A. Pendleton, Potential hazards from feeding test chemicals in carcinogen bioassay research, Toxicol. Appl. Pharmacol. 39, 435–450 (1977).

    Article  CAS  Google Scholar 

  73. E. B. Sansone and J. M. Fox, Potential chemical contamination in animal feeding studies: Evaluation of wire and solid bottom caging systems and gelled feed, Lab. Animal Sci. 27, 457–465 (1977).

    CAS  Google Scholar 

  74. E. B. Sansone and A. M. Losikoff, Potential contamination from feeding test chemicals in carcinogen bioassay research: Evaluation of single- and double-corridor animal housing facilities, Toxicol. Appl. Pharmacol. 50, 115–121 (1979).

    Article  CAS  Google Scholar 

  75. E. B. Sansone and A. M. Losikoff, Environmental contamination associated with administration of test chemicals in drinking water, Lab. Animal Sci. 32, 269–272 (1982).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Sansone, E.B. (1987). Redispersion of Indoor Surface Contamination and Its Implications. In: Mittal, K.L. (eds) Treatise on Clean Surface Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9126-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9126-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9128-9

  • Online ISBN: 978-1-4684-9126-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics