Skip to main content

Rate Processes in Multiparticle Metallurgical Systems

  • Chapter
Rate Processes of Extractive Metallurgy

Abstract

In the preceding chapter, the kinetic behavior of individual particles isolated in an infinite fluid medium has been discussed. The various steps or combinations of steps which can control the rate of heterogeneous reactions were identified and appropriate types of mathematical models to describe individual particle behavior were reviewed. In the present chapter, consideration is extended to the behavior of multiparticle systems. By definition, a multiparticle system consists of an assembly of particles that make up the disperse phase plus the environment surrounding the particles that makes up the continuous phase in a processing vessel. Virtually all particulate assemblages encountered in extractive metallurgical practice are polydisperse in nature, i.e., the particles being processed have a broad distribution of properties such as size, mineralogical composition, etc., which contribute to the overall behavior of the system. In addition, in practical systems the particles often interact with one another and/or with the fluid environment. If one wishes to accurately design a reactor, optimize an existing operation, or specify an effective automatic control strategy for an extractive metallurgical process, it is necessary to be able to describe, in quantitative terms, the influence of material property distributions and particle-particle or particle-fluid interactions on the overall reaction behavior of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. M. Hulburt and S. Katz, Chem. Eng. Sci. 19, 555 (1964).

    Article  CAS  Google Scholar 

  2. A. D. Randolph, Can. J. Chem. Eng. 42, 280 (1964).

    Article  Google Scholar 

  3. P. Yu, A kinetic study of the leaching of chalcopyrite at elevated temperatures and pressures, Ph.D. Dissertation, University of Utah, 1972.

    Google Scholar 

  4. C. Orr and J. M. Dallavalle, Fine Particle Measurement, Macmillan, New York (1959).

    Google Scholar 

  5. R. D. Cadle, Particle Size, Reinhold Publishing, Stamford, Conn. (1965).

    Google Scholar 

  6. R. Irani and C. Callis, Particle Size: Measurement, Interpretation and Application, Wiley, New York (1963).

    Google Scholar 

  7. T. Allen, Particle Size Measurement, Chapman and Hall, London (1968).

    Google Scholar 

  8. G. Herdan, Small Particle Statistics, Academic Press, New York (1960).

    Google Scholar 

  9. E. Parzen, Modern Probability Theory and Its Applications, Wiley, New York (1963).

    Google Scholar 

  10. M. Fisz, Probability Theory and Mathematical Statistics, Wiley, New York (1960).

    Google Scholar 

  11. H. D. Lewis and A. Goldman, Theoretical small particle statistics, Los Alamos Scientific Laboratory Report (1967).

    Google Scholar 

  12. D. M. Himmelblau, Process Analysis by Statistical Methods, Wiley, New York (1969).

    Google Scholar 

  13. A. D. Randolph and M. Larson, Theory of Particulate Processes, Academic Press, New York (1971).

    Google Scholar 

  14. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York (1960).

    Google Scholar 

  15. V. G. Jenson and G. V. Jeffereys, Mathematical Methods in Chemical Engineering, Academic Press, New York (1963).

    Google Scholar 

  16. D. C. Tim and M. A. Larson, AIChE J. 14, 452 (1968).

    Article  Google Scholar 

  17. L. G. Austin, Powder Technol. 5, 1 (1972–72).

    Article  Google Scholar 

  18. T. Meloy and A. Gaudin, Trans. AIME 223, 43 (1962).

    Google Scholar 

  19. A. Filippov, Theory Probab. Its AppL (USSR) 6, No. 3 (1961).

    Google Scholar 

    Google Scholar 

  20. L. G. Austin and P. T. Luckie, Trans. AIME 252, 82 (1972).

    Google Scholar 

  21. J. A. Herbst and T. Mika, Proceedings IX International Mineral Processing Congress, Prague (1970).

    Google Scholar 

  22. V. K. Gupta and P. C. Kapur, Fourth European Symposium on Comminution, H. Rumpf and K. Schonen, eds., Dechema-Monographien, Verlag Chemie (1976), p. 447.

    Google Scholar 

  23. K. Rajamani and J. A. Herbst, Computer evaluation of errors involved in the use of size discretized grinding models, manuscript in preparation.

    Google Scholar 

  24. K. J. Reid, Chem. Eng. Sci. 20, 953 (1965).

    Article  CAS  Google Scholar 

  25. J. A. Herbst et al., Fourth European Symposium on Comminution, H. Rumpf and K. Schonert, eds., Dechema-Monographien, Verlag Chemie (1972), p. 475.

    Google Scholar 

  26. J. A. Herbst and D. W. Fuerstenau, Trans. AIME 241, 538 (1968).

    Google Scholar 

  27. S. K. Freidlander and C. S. Wang, J. Colloid Interface Sci. 22 (2), 126 (1966).

    Article  Google Scholar 

  28. K. V. S. Sastry, The agglomeration of particulate materials by green peptization, Ph.D. Thesis, University of California (1970).

    Google Scholar 

  29. J. Valentas and N. Amundsen, Ind. Eng. Chem. Fundam. 4, 533 (1966).

    Article  Google Scholar 

  30. R. K. Bjpai and D. Ramkrishna, Chem. Eng. Sci. 31, 913 (1976).

    Article  Google Scholar 

  31. D. E. Brown and K. Pitt, Chem. Eng. Sci. 27, 577 (1972).

    Article  CAS  Google Scholar 

  32. L. W. Beckstead et al, Trans. TMS-AIME, 2 611 (1976).

    CAS  Google Scholar 

  33. D. M. Himmelblau, Process Analysis of Simulation, Wiley, New York (1968).

    Google Scholar 

  34. J. A. Herbst and K. V. S. Sastry, unpublished results (1977).

    Google Scholar 

  35. J. A. Herbst, K. Rajamani, and D. Kinneberg, ESTIMILL, University of Utah, Dept. of Metallurgy (1977).

    Google Scholar 

  36. M. Siddique, A kinetic approach to ball mill scale-up, M.S. Thesis, University of Utah (1977).

    Google Scholar 

  37. J. A. Herbst et al., Trans. IMM 80, C193 (1971).

    Google Scholar 

  38. R. P. Gardner and K. Verghese, Powder Technol. 11, 87 (1975).

    Article  Google Scholar 

  39. J. A. Herbst, An approach to the modeling of continuous leaching systems, Annual AIME Meeting, New York (1975).

    Google Scholar 

  40. R. W. Bartlett, Met. Trans. 2, 2999 (1971).

    Article  CAS  Google Scholar 

  41. P. Harriot, AIChE J. 8, 93 (1962).

    Article  Google Scholar 

  42. S. Pohlman, The dissolution kinetics of chrysocolla using a weight loss technique, Ph.D. Thesis, University of Utah (1974).

    Google Scholar 

  43. D. M. Himmelblau and D. A. Paviani, Operations Res. 17, 872 (1969).

    Article  Google Scholar 

  44. L. Lapidus, Numerical Methods for Chemical Engineers, Wiley, New York (1962)/

    Google Scholar 

  45. D. Ramkrishna, Chem. Eng. Sci. 28, 1423 (1973).

    Article  CAS  Google Scholar 

  46. D. Ramkrishna, Chem. Eng. Sci. 29, 1711 (1974).

    Article  CAS  Google Scholar 

  47. H. Imai and T. Miyauchi, J. Chem. Eng. Japan 1 (1), 77 (1968).

    Article  CAS  Google Scholar 

  48. R. P. King, S. African IMM 341 (1973).

    Google Scholar 

  49. P. C. Kapur and D. W. Fuerstenau, Ind. Eng. Chem. Process Design Develop. 8 (1) (1969).

    Google Scholar 

  50. D. Kunii and O. Levenspiel, Fluidization Engineering, Wiley, New York (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Herbst, J.A. (1979). Rate Processes in Multiparticle Metallurgical Systems. In: Sohn, H.Y., Wadsworth, M.E. (eds) Rate Processes of Extractive Metallurgy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9117-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9117-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9119-7

  • Online ISBN: 978-1-4684-9117-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics