Skip to main content

Linear Colliders Driven by A Superconducting Linac-Fel System

  • Chapter
New Techniques for Future Accelerators

Part of the book series: Ettore Majorana International Science Series ((EMISS,volume 29))

  • 83 Accesses

Abstract

In this paper we discuss linear colliders in the TeV energy region, based on a two beam accelerator scheme. The low energy beam is used in a Free Electron Laser to produce short wavelength radiation, in the range from one cm to a fraction of a mm. The energy lost by this beam is restored by a superconducting linac. The short wavelength radiation is fed to a high frequency, linac-type structure, where the high energy beam is accelerated. We give a review of the scaling laws for a linear collider and use them to find some possible set of parameters for our system. We then discuss some of the accelerator technical problems and the beam physics problems encountered in the design of such a system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Richter, Nuclear Instr. and Meth. 136:47 (1976).

    Article  ADS  Google Scholar 

  2. E. Keil et al., e+-e- colliders, in: Proc. of the second ICFA Workshop on Possibilities and Limitations of Accelerators and Detectors, U. Amaldi, ed., CERN, Geneva (1980).

    Google Scholar 

  3. B. Richter, in: Laser Acceleration of Particles, C. Joshi and T. Katsouleas, eds., American Institute of Physics, Conf. Proc, no. 130, p.8 (1985).

    Google Scholar 

  4. U. Amaldi, Nuclear Instr. and Meth. A 243: 312 (1986).

    Article  ADS  Google Scholar 

  5. J. Lawson, Linear collider constraints: some implications for future accelerators, CERN report 85–15 (1985).

    Google Scholar 

  6. C. Pellegrini, in: Proc. of the 1985 Intern. Symp. on Lepton and Photon Interactions at High Energies, Kyoto (1985).

    Google Scholar 

  7. A.M. Sessler, in: Laser Acceleration of Particles, American Institute of Physics, Conf. Proc. vol. 91, p.154 (1982); also A.M.Sessler, IEEE Trans. Nucl. Sci., NS-30:3145 (1983).

    Google Scholar 

  8. R. Hollebeek, Nuclear Instr. and Meth. 184:333 (1985).

    Article  ADS  Google Scholar 

  9. T.Himmel and J.Siegrist, in ref.2, p.602 (1980).

    Google Scholar 

  10. K.Yokoya, KEK report 85–53 (1985).

    Google Scholar 

  11. R. Noble, Simulation of beamstrahlung for colliding e++e- beams with negligible disruption, AAS-note 3, SLAC (1985).

    Google Scholar 

  12. In ref.4 the beamstrahlung parameter is defined to be \(2\sqrt 2 \) times smaller.

    Google Scholar 

  13. W.K.H. Panofsky, Limiting Technologies for Particle Beams and High Energy Physics, SLAC report, SLAC-Pub-3735 (1985).

    Google Scholar 

  14. SLC Design Handbook, Stanford Linear Accelerator Center, Stanford (1984).

    Google Scholar 

  15. A.M. Hutton et al., IEEE Trans. Nucl. Sci. NS-32:1659 (1985).

    Article  ADS  Google Scholar 

  16. M. Barton, IEEE Trans. Nucl. Sci. NS-32:3350 (1985).

    Article  ADS  Google Scholar 

  17. S. Krinsky, in: Free Electron Generation of Extreme Ultraviolet Coherent Radiation, J.M.J. Madey and C. Pellegrini, eds., American Institute of Physics, Conf. Proc, vol. 118, p.44 (1984).

    Google Scholar 

  18. C. Joshi and T. Katsouleas, eds., Laser Acceleration of Particles, American Institute of Physics, Conf. Proc, vol.130 (1985).

    Google Scholar 

  19. D.B. Hopkins et al., IEEE Trans. Nucl. Sci. NS-32:3476 (1985).

    Article  ADS  Google Scholar 

  20. R.B.Palmer et al., ref.18, p.234 (1985).

    Google Scholar 

  21. N.M.Kroll, ref.18, p.253 (1985).

    Google Scholar 

  22. See for instance: P.B.Wilson, ref.18, p.560 (1985).

    Google Scholar 

  23. H. Piel, IEEE Trans. Nucl. Sci. NS-32:3565 (1985).

    Article  ADS  Google Scholar 

  24. U. Amaldi, H. Lengeler and H. Piel, Linear colliders with superconducting cavities, CLIC Note-15, CERN/EF 86–8 (1986).

    Google Scholar 

  25. U. Amaldi, Phys. Letters 61B:313 (1976).

    ADS  Google Scholar 

  26. M. Tigner, Nuovo Cimento 37:1228 (1956).

    Google Scholar 

  27. W. Schnell, Dissipation versus peak power in a classical linac, CERN report LEP-RF/WS/PS (1985).

    Google Scholar 

  28. W. Schnell, Consideration of a two beam twin RF scheme for powering an RF linear collider, CERN report LEP-RF/WS/PS (1985).

    Google Scholar 

  29. L.R. Elias et al., Nuclear Instr. and Meth. A237:203 (1985).

    Article  ADS  Google Scholar 

  30. N.M. Kroll, P.L. Morton and M.W. Rosenbluth, IEEE J. Quantum Electronics QE-17:1436 (1981).

    Article  ADS  Google Scholar 

  31. D.B. Hopkins, A.M. Sessler and J.S. Wurtele, Nuclear Instr. and Meth. A228:15 (1984).

    Article  ADS  Google Scholar 

  32. E.J. Sternbach and A.M. Sessler, A steady state FEL: Particle dynamics in the FEL portion of a two beam accelerator, Lawrence Berkeley Laboratory report, LBL-19939 (1985).

    Google Scholar 

  33. R. Chasman and K. Green, Brookhaven National Laboratory report, BNL 50505 (1980).

    Google Scholar 

  34. H. Bruck, Accelerateurs Circulaire de Particules, Presse Universitaire, Paris (1966).

    Google Scholar 

  35. A. Piwinsky, in: Proc. 9th Intern. Conf. on High Energy Accelerators, Stanford (1974).

    Google Scholar 

  36. J.D. Bjorken and S.E. Mtingwa, Particle Accelerators 13:115 (1983).

    Google Scholar 

  37. J. Bisognano et al., Feasibility study of a storage ring for a high power XUV free electron laser, Lawrence Berkeley Laboratory, report LBL-19771 (1985).

    Google Scholar 

  38. M. Sands, The physics of electron storage rings. An introduction, in: Physics with Intersecting Storage Rings, B. Touschek, ed., Academic Press, New York (1971).

    Google Scholar 

  39. C. Pellegrini, IEEE Trans. Nucl. Sci. NS-28:2413 (1981).

    Article  ADS  Google Scholar 

  40. R.W. Kuenning and A.M. Sessler, Nuclear Instr. and Meth. A243:263 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Amaldi, U., Pellegrini, C. (1987). Linear Colliders Driven by A Superconducting Linac-Fel System. In: Puglisi, M., Stipcich, S., Torelli, G. (eds) New Techniques for Future Accelerators. Ettore Majorana International Science Series, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9114-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9114-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9116-6

  • Online ISBN: 978-1-4684-9114-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics