Skip to main content

Lattice Heat Capacity

  • Chapter

Part of the book series: The International Cryogenics Monograph Series ((INCMS))

Abstract

One of the earliest empirical generalizations concerning the specific heat of solids was enunciated by Dulong and Petit in 1819. Its theoretical justification was advanced by Boltzmann in 1871, and in 1907 Einstein showed why it failed at low temperatures. These dates are among the principal landmarks in the study of specific heats. To appreciate the significance of these developments, consider the specific heats of several common elements at room temperatures, as collected in Table 2.I. The specific heat per gram of the element varies considerably, being small for the elements of high atomic weight and large for those of low atomic weight. However, the heat capacity per gram-atom of all of them is nearly equal to 6.2 cal/moledeg,

Table 2.1 Specific Heat of Solid Elements at Room Temperature1
Table 2.II. Molar Heat Capacity of Compounds1 (in cal/mole-deg)

which is the rule found by Dulong and Petit in 1819. A closer inspection shows that for “light and hard” elements (silicon, boron, and carbon) the atomic heat capacity falls much below the Dulong-Petit value.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Eucken, Handbuch der experimental Physik, VIII (I) (1929), chapter 5.

    Google Scholar 

  2. A. J. Rutgers, Physical Chemistry, Interscience, New York, 1954, chapters 11 and 33.

    Google Scholar 

  3. J. C. Slater, Introduction to Chemical Physics, McGraw-Hill, New York, 1939, chapters 3 and 4.

    Google Scholar 

  4. Landolt-Bornstein physikalish chemische Tabellen, Springer-Verlag, Berlin, ed. 5, suppl. 1, p.702 (1927); ed. 6, Vol. 2, Part 4, p.736 (1961).

    Google Scholar 

  5. J. Sherman and R. B. Ewell, J. Phys. Chem. 46, 641 (1942).

    Article  Google Scholar 

  6. D. R. Stull and F. D. Mayfield, Ind. Eng. Chem. 35, 639 (1943).

    Article  Google Scholar 

  7. H. Zeise, Thermodynamik, Vol. 3, Hirzel, Leipzig, 1954.

    Google Scholar 

  8. W. C. Overton and J. H. Hancock, Tables of Einstein Functions, U.S. Naval Res. Lab. Rept. No. 5502 (1960).

    Google Scholar 

  9. J. Hilsenrath and G. G. Ziegler, Tables of Einstein Functions, Nat. Bur. Std. Monograph No. 49 (1962).

    Google Scholar 

  10. J. de Launay, Solid State Phys. 2, 219 (1956).

    Google Scholar 

  11. R. F. S. Hearmon, Introduction to Applied Anisotropic Elasticity, Oxford University Press, Oxford, 1961.

    Google Scholar 

  12. M. J. P. Musgrave, Rept. Progr. Phys. 22, 74 (1959);

    Article  Google Scholar 

  13. M. J. P. Musgrave, Progr. Solid Mech. 2, 63 (1961).

    Google Scholar 

  14. H. Weyl, Math. Ann. 71, 441 (1911).

    Article  Google Scholar 

  15. R. D. Courant, Math. Ztschr. 7, 14 (1920).

    Article  Google Scholar 

  16. W. Ledermann, Proc. Roy. Soc. (London), Ser. A. 182, 362 (1944).

    Article  Google Scholar 

  17. R. E. Peierls, Proc. Nat. Inst. Sci. India 20A, 121 (1954).

    Google Scholar 

  18. M. Blackman, Handbuch der Physik, VII (I), 325 (1955).

    Article  Google Scholar 

  19. J. A. Beattie, J. Math. Phys. (MIT), 6, 1 (1926).

    Google Scholar 

  20. G. F. Newell, J. Chem. Phys. 23, 2431 (1955).

    Article  Google Scholar 

  21. L. S. Kothari and V. K. Tewary, J. Chem. Phys. 38, 417 (1963).

    Article  Google Scholar 

  22. B. J. C. van der Hoeven and P. H. Keesom, Phys. Rev. 130, 1318 (1963).

    Article  Google Scholar 

  23. E. Schrödinger, Handbuch der Physik, X, 275 (1926).

    Google Scholar 

  24. D. Bijl, Progr. Low Temp. Phys. 2, 395 (1957).

    Article  Google Scholar 

  25. J. D. Filby and D. L. Martin, Proc. Roy. Soc. (London), Ser. A 276, 187 (1963).

    Article  Google Scholar 

  26. W. T. Berg and J. A. Morrison, Proc. Roy. Soc. (London), Ser. A 242, 467 (1957).

    Article  Google Scholar 

  27. M. Blackman, Rept. Progr. Phys. 8, 11 (1941).

    Article  Google Scholar 

  28. L. Brillouin, Wave Propagation in Periodic Structures, Dover, New York, 1954.

    Google Scholar 

  29. G. H. Wannier, Elements of Solid State Theory, Cambridge University Press, Cambridge, 1959, chapter 3.

    Google Scholar 

  30. L. S. Kothari and K. Singwi, Solid State Phys. 8, 109 (1959).

    Article  Google Scholar 

  31. A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation (suppl. 4 to Solid State Physics), Academic Press, New York, 1963.

    Google Scholar 

  32. W. Cochran, Rept. Progr. Phys. 26, 1 (1963).

    Article  Google Scholar 

  33. A. E. Dixon, A. D. B. Woods, and B. N. Brockhouse, Proc. Phys. Soc. (London) 81, 973 (1963).

    Article  Google Scholar 

  34. G. Gilat and G. Dolling, Phys. Letters 8, 304 (1964).

    Article  Google Scholar 

  35. B. Dayal and S. P. Singh, Proc. Phys. Soc. (London) 76, 777 (1960).

    Article  Google Scholar 

  36. B. Dayal and B. B. Tripathi, Proc. Phys. Soc. (London) 11, 303 (1961).

    Google Scholar 

  37. G. Leibfried, Handbuch der Physik, VII (I), 104 (1955).

    Article  Google Scholar 

  38. R. G. Chambers, Proc. Phys. Soc. (London) 78, 941 (1961).

    Article  Google Scholar 

  39. S. O. Lundqvist, V. Lundstrom, E. Tenerz, and I. Waller, Ark. Fysik 15, 193 (1959).

    Google Scholar 

  40. C. B. Walker, Phys. Rev. 103, 547 (1956).

    Article  Google Scholar 

  41. G. Liebfried and W. Ludwig, Solid State Phys. 12, 275 (1961).

    Article  Google Scholar 

  42. T. H. K. Barron and M. L. Klein, Phys. Rev. 127, 1997 (1962).

    Article  Google Scholar 

  43. R. A. Cowley, Advan. Phys. 12, 421 (1963).

    Article  Google Scholar 

  44. F. H. Herbstein, Advan. Phys. 10, 313 (1961).

    Article  Google Scholar 

  45. J. R. Partington, Advanced Treatise on Physical Chemistry, Vol. 3, Longmans-Green, London, 1952, section 9N.

    Google Scholar 

  46. G. A. Alers and J. R. Neighbours, Rev. Mod. Phys. 31, 675 (1959).

    Article  Google Scholar 

  47. J. L. Feldman, Proc. Phys. Soc. (London) 84, 361 (1964).

    Article  Google Scholar 

  48. O. L. Anderson, J. Phys. Chem. Solids 12, 41 (1959).

    Article  Google Scholar 

  49. P. Flubacher, A. I. Leadbetter, J. A. Morrison, and B. P. Stoicheff, J. Phys. Chem. Solids 12, 53 (1959).

    Article  Google Scholar 

  50. H. B. Rosenstock, J. Phys. Chem. Solids 23, 659 (1962).

    Article  Google Scholar 

  51. E. Grüneisen, Handbuch der Physik X, 1 (1926).

    Google Scholar 

  52. J. K. Roberts, and A. R. Miller, Heat and Thermodynamics, Blackie, London, 1960, chapter 22.

    Google Scholar 

  53. C. Domb in Proceedings of the Eighth International Conference on Low Temperature Physics (London, 1962, R. O. Davies, editor), Butterworth, London, 1963, p.385.

    Google Scholar 

  54. J. G. Collins and G. K. White, Progr. Low Temp. Phys. 4, 450 (1964).

    Article  Google Scholar 

  55. S. S. Mitra, Solid State Phys. 13, 1 (1962).

    Article  Google Scholar 

  56. F. A. Johnson and R. Loudon, Proc. Roy. Soc. (London), Ser. A 281, 274 (1964).

    Article  Google Scholar 

  57. W. A. Wooster, Diffuse X-Ray Reflections from Crystals, Clarendon, Oxford, 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1966 Plenum Press

About this chapter

Cite this chapter

Gopal, E.S.R. (1966). Lattice Heat Capacity. In: Specific Heats at Low Temperatures. The International Cryogenics Monograph Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9081-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9081-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9083-1

  • Online ISBN: 978-1-4684-9081-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics