Skip to main content

Elementary Concepts of Specific Heats

  • Chapter
  • 452 Accesses

Part of the book series: The International Cryogenics Monograph Series ((INCMS))

Abstract

The specific heat of a substance is defined as the quantity of heat required to raise the temperature of a unit mass of the substance by a unit degree of temperature. To some extent, the specific heat depends upon the temperature at which it is measured and upon the changes that are allowed to take place during the rise of temperature. If the properties x, y,..., are held constant when a heat input dQ raises the temperature of unit mass of the substance by dT, then

$$ {C_{x,y,...}} = \frac{{\lim }}{{dT \to 0}}{\left( {\frac{{dQ}} {{dT}}} \right)_{x,y,...}} $$
((1.1))

The specific heat, sometimes called the heat capacity, is in general a positive quantity. In the absence of any rigid convention, it seems best to use the term specific heat when referring to 1 g of the material and the term heat capacity when a more general amount of the material, i.e., a gram-atom or a gram-molecule, is involved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. W. Zemansky, Heat and Thermodynamics, McGraw-Hill, New York, 1957.

    Google Scholar 

  2. J. K. Roberts and A. R. Miller, Heat and Thermodynamics, Blackie, London, 1960.

    Google Scholar 

  3. H. B. Huntington, Solid State Phys. 7, 213 (1958).

    Article  Google Scholar 

  4. R. F.S. Hearmon, Introduction to Applied Anisotropic Elasticity, Oxford University Press, Oxford, 1961.

    Google Scholar 

  5. R. Viswanathan and E. S. Raja Gopal, Physica 27, 1226 (1961).

    Article  Google Scholar 

  6. H. R. O’Neal, Ph.D. thesis (unpublished), University of California, 1963.

    Google Scholar 

  7. J. A. Rayne, Austral. J. Phys. 9, 189 (1956).

    Article  Google Scholar 

  8. K. G. Ramanathan and T. M. Srinivasan, J. Sci. Industr. Res. 16B, 277 (1957).

    Google Scholar 

  9. W. E. Gardner and N. Kurti, Proc. Roy. Soc. (London), Ser. A 223, 542 (1954).

    Article  Google Scholar 

  10. C. Kittel, Elementary Statistical Physics, Wiley, New York, 1958.

    Google Scholar 

  11. D. K. C. MacDonald, Introductory Statistical Mechanics for Physicists, Wiley, New York, 1963.

    Google Scholar 

  12. F. Lange, Z. Phys. Chem. 110, 343 (1924).

    Google Scholar 

  13. J. C. Southard and D. H. Andrews, J. Franklin Inst. 209, 349 (1930).

    Article  Google Scholar 

  14. G. K. White, Experimental Techniques in Low Temperature Physics, Clarendon, Oxford, 1959.

    Google Scholar 

  15. F. E. Hoare, L. C. Jackson, and N. Kurti, Experimental Cryophysics, Butterworth, London, 1961.

    Google Scholar 

  16. F. Din and A. H. Cockett, Low Temperature Techniques, Newnes, London, 1960.

    Google Scholar 

  17. A. C. Rose-Innes, Low Temperature Techniques, English University Press, London, 1964.

    Google Scholar 

  18. D. H. Howling, E. Mendoza, and J. E. Zimmerman, Proc. Roy. Soc. (London), Ser. A 229, 86 (1955).

    Article  Google Scholar 

  19. N. V. Zavaritsky, Progr. Cryogenics 1, 207 (1959).

    Google Scholar 

  20. J. S. Rowlinson, The Perfect Gas, Pergamon, Oxford, 1963, chapter 2.

    Google Scholar 

  21. P. H. Keesom and N. Pearlman, Handbuch der Physik, XIV (I), 282 (1956).

    Article  Google Scholar 

  22. D. H. Parkinson, Rept. Progr. Phys. 21, 226 (1958).

    Article  Google Scholar 

  23. R. W. Hill, Progr. Cryogenics 1, 179 (1959).

    Google Scholar 

  24. W. P. White, The Modem Calorimeter, Chem. Pub. Co., New York, 1928.

    Google Scholar 

  25. J. M. Sturtevant, in: A. Weissberger (ed.), Physical Methods of Organic Chemistry, Part I, Interscience, New York, 1959, chapter 10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1966 Plenum Press

About this chapter

Cite this chapter

Gopal, E.S.R. (1966). Elementary Concepts of Specific Heats. In: Specific Heats at Low Temperatures. The International Cryogenics Monograph Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9081-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9081-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9083-1

  • Online ISBN: 978-1-4684-9081-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics