Skip to main content

Immobilized Artificial Membrane Chromatography

Initial Studies Using Monomyristoylphosphatidylcholine as a Detergent for Solubilizing and Purifying Membrane Proteins

  • Chapter
Book cover Modern Phytochemical Methods

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 25))

Abstract

Immobilized artificial membranes (IAM) are solid-phase-membrane-mimetics.1 Synthesis of IAM particles entails bonding cell membrane lipid molecules to solid surfaces at high molecular surface densities.1–4 Thus IAM surfaces are intended to mimic the lipid environment of cell membranes and consequently the initial applications of IAM particles relate to endogenous solute—membrane interactions. Non-chromatographic applications of IAM include reconstitution of phospholipase D (unpublished observation), and the correlation of drug-binding to IAM with drug-transport through human skin.5 Chromatographic applications include the purification of cytochrome P-450 (submitted for publication and also refs.6,7), and the purification of other membrane proteins.8 Although both non-chromatographic and chromatographic applications are evolving, the most useful application (s) of IAM will be for the purification of membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. PIDGEON, C., VENKATARUM, U.V. 1989. Immobilized artificial membrane chromatography: supports composed of membrane lipids. Anal. Biochem. 176: 36–47.

    Article  PubMed  CAS  Google Scholar 

  2. MARKOVICH, R.J., STEVENS, J.M., PIDGEON, C. 1989. Fourier transform infrared assay of membrane lipids immobilized to silica: leaching and stability of immobilized artificial membrane-bonded phases. Anal. Biochem. 182: 237–244.

    Article  PubMed  CAS  Google Scholar 

  3. STEVENS, J.M., MARKOVICH, J.M., PIDGEON, C. 1989. Characterization of immobilized artificial membrane HPLC columns using deoxynucleotides as model compounds. Biochrom. 4: 192–205.

    CAS  Google Scholar 

  4. PIDGEON, C. 1989. Solid phase membrane mimetics. Enzyme Microb. Technol. 12, 149–150.

    Article  Google Scholar 

  5. CHIKHALE, P., ALVAREZ, F.M., PIDGEON, C., WALTON, L., KEUSTER, J. 1989. Simulation of human skin permeation by immobilized artificial membrane HPLC columns. American Association of Pharmaceutical Scientists, 4th annual meeting, Atlanta, GA. Oct. 22–26. Pharm. Res. 6: 5–147.

    Google Scholar 

  6. OTTO, S., MARCUS, C., JEFCOATE, C.R. 1990. Characterization of novel ACTH-inducible cytochrome P-450 from rat adrenal microsomes. FASEB, annual meeting Washington, DC, pp. A753, Abstract 2821.

    Google Scholar 

  7. MARCUS, C.B., PIDGEON, C., OTTO, S., JEFCOATE, C.R. 1990. Rapid purification of functional cytochrome P-450 and P-450 reductase by high pressure liquid chromatography utilizing immobilized artificial membranes (IAM): A new solid phase membrane mimetic matrix. VIII International Symposium on Microsomes and Drug Oxidations. Karolinska, Stockholm Sweden, June 25–29, 1990, p. 230.

    Google Scholar 

  8. Hazelbrook, J.P., Coolbaugh, R.C., Marcus, C.B. 1989. Partial purification of kaurene oxidase from microsomal preparations of Gibberella fujikuroi.. American Society of Plant Physiology. National Meeting, Toronto, Ontario, July 30-Aug. 3. Plant Physiol. 89S: 107.

    Google Scholar 

  9. LAEMMLE, U., 1970. Cleavage of structural proteins during the assembly of The Head Bacteriophage T4. Nature 227: 680–685.

    Article  Google Scholar 

  10. AMES, G.F-L. 1974. Resolution of Bacterial Proteins by Polyacrylamide Gel Electrophoresis on Slabs. J. Biol. Chem: 249: 634–644.

    PubMed  CAS  Google Scholar 

  11. GOW, A., AUTON, W., SMITH, R. 1990. Interactions between bovine myelin basic protein and zwitterionic lysophospholipids. Biochemistry. 29: 1142–1146.

    Article  PubMed  CAS  Google Scholar 

  12. MENDZ, G.L., BROWN, L.R., MATERSON, R.E. 1990. Interactions of myelin basic protein with mixed dodecylphosphocholine/ palmito-yllysophosphatidic acid micelles. Biochemistry, 29: 2304–2311.

    Article  PubMed  CAS  Google Scholar 

  13. MENDZ, G.L., MOORE, W.J., KAPLIN, I., CORNELL, B.A., SEPAROVIC, F., MILLER, D.J., BROWN, L.R. 1988. Characterization of dodecylphosphocholine/myelin basic protein complexes. Biochemistry 27:379–386.

    Article  PubMed  CAS  Google Scholar 

  14. MENDZ, G.L., MOORE, W.J., BROWN, L.R., MARTENSON, R.E. 1984. Interaction of myelin basic protein with micelles of dodecylphosphocholine. Biochemistry 23: 6041–6046.

    Article  PubMed  CAS  Google Scholar 

  15. ABU-HAMDIYYAH, M., MYSELS, K.L. 1967. The dialysis of sodium dodecylsulfate, its activity above the critical micelle concentration, and the phase separation model of micelle formation. J. Phys. Chem. 71: 418–426.

    Article  CAS  Google Scholar 

  16. STAGFORD, R.E., FANNI, T., DENNIS, E.A. 1989. Interfacial properties and critical micelle concentration of lysophospholipids. Biochemistry, 28: 5113–5120.

    Article  Google Scholar 

  17. GOW, A., WINDSOR, D.J., AND SMITH, R. 1987. Equilibrium binding of myristoyllyso-phosphatidylcholine to bovine myelin basic protein. An example of ligand-mediated acceptor association. Biochemistry 26: 982–987.

    Article  PubMed  CAS  Google Scholar 

  18. DE PINTO, V., BENTZ, R., PALMIER, F. 1989. Interaction of non-classical detergents with mitochondrial porin. A new purification procedure and characterization of the pore-forming unit Eur. J. of Biochem. 183: 179–187.

    Google Scholar 

  19. GOODMAN, S.R., KREBS, K.E., WHITFIELD, C.F., REIDERER, B.M., ZAGON, I.S. 1988. Spectrin and related molecules, CRC Critical Reviews in Biochemistry, pp. 171–234.

    Google Scholar 

  20. BENNETT, V. 1983. Proteins involved in membrane-cytoskeleton association in human erythrocytes: spectrin, ankyrin, and band 3. Methods Enzymol. 96: 313–324.

    Article  PubMed  CAS  Google Scholar 

  21. DANILOV, Y., FENNELL, R., LING, E., COHEN, C.M. 1990. Selective modulation of band 4.1 binding to erythrocyte membranes by protein kinase C J. Biol. Chem. 265: 2556–2562.

    PubMed  CAS  Google Scholar 

  22. MATSON, R.S., GOHEEN, S.C. 1986. Use of high-performance size exclusion chromatography to determine the extent of detergent solubilization of human erythrocyte ghosts. J. Chromatog. 359: 285–295.

    Article  CAS  Google Scholar 

  23. THOMAS, T.C., MCNAMEE, M.G. 1990 Purification of membrane proteins. Methods Enzymol. 182: 419–520.

    Google Scholar 

  24. JONES, AJ.S., RUMSBY, M.G. 1978. Interaction of the myelin basic protein with the anionic detergent sodium dodecyl sulfate. Biochem. J. 169: 281–285.

    PubMed  CAS  Google Scholar 

  25. SMITH, R., MCDONALD, B J. 1979. Association of myelin basic protein with detergent micelles. Biochim. Biophys. Acta 554: 133–147.

    Article  PubMed  CAS  Google Scholar 

  26. HARTSHORNE, R.P., CATTERALL, W.A. 1984. The sodium channel from rat brain, purification and subunit composition. J. Biol. Chem. 259: 1667–1675.

    PubMed  CAS  Google Scholar 

  27. CATTERALL, W.A., MORROW, C.S., HARTSHORNE, R.P. 1979. Neurotoxin binding to receptor sites associated with voltage-sensitive sodium channels in intact, lysed, and detergent-solubilized brain membranes. J. Biol. Chem. 254: 11379–11387.

    PubMed  CAS  Google Scholar 

  28. MERRIL, C.R., SWITZER, R.C., VAN KEUREN, M.L. 1979. Trace polypeptides in cellular extracts and human body fluids detected by two-dimensional electrophoresis and a highly sensitive silver stain. Proc. Nad. Acad. Sci. U.S.A. 76: 4335–4339.

    Article  CAS  Google Scholar 

  29. SWITZER, R.C., MERRIL, C.R., SHIFRIN, S. 1979. A highly sensitive silver stain for detecting protein and peptides in Polyacrylamide gel electrophoresis. Anal. Biochem. 98: 231–237

    Article  PubMed  CAS  Google Scholar 

  30. MERRIL, C.R., 1990. GEL STAINING TECHNIQUES. METHODS ENZYMOL. 182: 477–488.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Chae, WG., Luo, C., Rhee, D.M., Lombardo, C.R., Low, P., Pidgeon, C. (1991). Immobilized Artificial Membrane Chromatography. In: Fischer, N.H., Isman, M.B., Stafford, H.A. (eds) Modern Phytochemical Methods. Recent Advances in Phytochemistry, vol 25. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9060-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9060-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9062-6

  • Online ISBN: 978-1-4684-9060-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics