Skip to main content

Perspectives on the Biological Function and Enzymology of Protein Carboxyl Methylation Reactions in Eucaryotic and Procaryotic Cells

  • Chapter
Advances in Post-Translational Modifications of Proteins and Aging

Part of the book series: Advances in Experimental Medicine and Biology ((NATO ASI F,volume 231))

Abstract

Enzymes have been detected in all cells examined so far that catalyze the incorporation of methyl groups from S-adenosylmethionine into base-labile linkages on proteins. Although the products of these reactions have many of the properties of methyl esters, their frequent instability has often precluded direct analysis of the linkage chemistry. As a result, previous studies of “protein carboxyl methyltransferase” have included representatives of what has turned out to be at least two distinct classes of enzymes. The often mentioned specificity of such an activity for aspartyl and glutamyl residues is based largely on the apparent chemical reasonableness of such assignments, and specific evidence for the methylation of such residues has rarely been presented. The lack of specific knowledge on the chemistry of such modification reactions has been accompanied by a similar lack of understanding of their physiological role (for reviews of the earlier literature see Gagnon and Heisler, 1979; Borchardt, 1980; Paik and Kim, 1980; O’Dea et al., 1981; Clarke, 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahern, T. J., and Klibanov, A. M., 1985, The mechanism of irreversible enzyme inactivation at 100°C, Science, 228:1280.

    Article  PubMed  CAS  Google Scholar 

  • Ahern, T. J., Casal, J. I., Petsko, G. A., and Klibanov, A. M., 1987, Control of oligomeric enzyme thermostability by protein engineering, Proc. Natl. Acad. Sci. U. S. A., 84:675.

    Article  PubMed  CAS  Google Scholar 

  • Altman, G., 1986, Presence of D-aspartic acid and D-aspartyl peptides in human urine: Implications for protein racemization and turnover, Master’s Thesis, Department of Chemistry and Biochemistry, University of California at Los Angeles.

    Google Scholar 

  • Aswad, D. W., 1984, Stoichiometric methylation of porcine adrenocorticotropin by protein carboxyl methyltransferase requires deamidation of asparagine 25: Evidence for methylation at the alpha-carboxyl group of atypical L-isoaspartyl residues, J. Biol. Chem., 259:10714.

    PubMed  CAS  Google Scholar 

  • Aswad, D. W., and Deight, E. A., 1983, Purification and characterization of two distinct isozymes of protein carboxymethylase from bovine brain, J. Neurochem., 40:1718.

    Article  PubMed  CAS  Google Scholar 

  • Aswad, D. W., and Johnson, B. A., 1987, The unusual substrate specificity of eukaryotic protein carboxyl methyltransferases, Trends Biochem. Sci., 12:155.

    Article  CAS  Google Scholar 

  • Bachmair, A., Finley, D., and Varshavsky, A., 1986, In vivo half-life of a protein is a function of its amino-terminal residue, Science, 234:179.

    Article  PubMed  CAS  Google Scholar 

  • Bada, J. L., 1984, In vivo racemization in mammalian proteins, Methods Enzvmol., 106:98.

    CAS  Google Scholar 

  • Barber, J. R., and Clarke, S., 1983, Membrane protein carboxyl methylation increases with human erythrocyte age: Evidence for an increase in the number of methylatable sites, J. Biol. Chem., 258:1189.

    PubMed  CAS  Google Scholar 

  • Barber, J. R., and Clarke, S., 1985, Demethylation of protein carboxyl methyl esters: A nonenzymatic process in human erythrocytes?, Biochemistry, 24:4867.

    Article  PubMed  CAS  Google Scholar 

  • Bernhard, S. A., 1983, Nucleophilic displacement reactions at ester and thioester bonds, Annals N. Y. Acad. Sci., 421:28.

    Article  CAS  Google Scholar 

  • Betz, R., Crabb, J. W., Meyer, H. E., Wittig, R., and Duntze, W., 1987, Amino acid sequences of a-Factor mating peptides from Saccharomyces cerevisiae, J. Biol. Chem., 262:546.

    PubMed  CAS  Google Scholar 

  • Blodgett, J. K., Loudon, G. M., and Collins, K. D., 1985, Specific cleavage of peptides containing an aspartic acid beta-hydroxamic acid residue, J. Am. Chem. Soc., 197:4305.

    Article  Google Scholar 

  • Borchardt, R. T., 1980, S-Adenosyl-L-methionine-dependent macromolecule methyltransferases, J. Med. Chem., 23:347.

    Article  PubMed  CAS  Google Scholar 

  • Bornstein, P., and Balian, G., 1970, The specific nonenzymatic cleavage of bovine ribonuclease with hydroxylamine, J. Biol. Chem., 245:4854.

    PubMed  CAS  Google Scholar 

  • Brot, N. and Weissbach, H., 1983, Biochemistry and physiological role of methionine sulfoxide residues in proteins, Arch. Biochem. Biophys., 223:271.

    Article  PubMed  CAS  Google Scholar 

  • Brunauer, L. S., and Clarke, S., 1986, Age-dependent accumulation of protein residues which can be hydrolyzed to D-aspartic acid in human erythrocytes” J. Biol. Chem., 261:12538.

    PubMed  CAS  Google Scholar 

  • Chen, J.-K., and Liss, M., 1978, Evidence of carboxyraethylation of nascent peptide chains on ribosomes, Biochem. Biophys. Res. Commun., 84:261.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z.-Q., Ulsh, L. S., DuBois, G., and Shin, T. Y., 1985, Post-translational processing of p21 ras proteins involves palmitoylation of the C-terminal tetrapeptide containing cysteine-186, J. Virology, 56:607.

    PubMed  CAS  Google Scholar 

  • Clarke, S., 1985, Protein carboxyl methyltransferases: Two distinct classes of enzymes, Annu. Rev. Biochem., 54:479.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, S., 1987, Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins, submitted for publication.

    Google Scholar 

  • Clarke, S., McFadden, P. N., O’Connor, C. M., and Lou, L. L., 1984, Isolation of D-aspartic acid beta-methyl ester from erythrocyte carboxyl methylated proteins, Methods Enzvmol., 106:331.

    Google Scholar 

  • Clarke, S., Panasenko S., Sparrow, K., and Koshland, D. E. Jr., 1980, In vitro methylation of bacterial Chemotaxis proteins: Characterization of protein methyltransferase activity in crude extracts of Salmonella typhimurium, J. Supramol. Struct., 13:315.

    Article  PubMed  CAS  Google Scholar 

  • Di Donato, A., Galletti, P., and D’Alessio, G., 1986, Selective deamidation and enzymatic methylation of seminal ribonuclease, Biochemistry, 25:8361.

    Article  PubMed  Google Scholar 

  • Diliberto, E. J., Jr., and Axelrod, J., 1976, Regional and subcellular distribution of carboxymethylase in brain and other tissues, J. Neurochem., 26:1159.

    Article  PubMed  CAS  Google Scholar 

  • Flatmark, T., 1966, On the heterogeneity of beef heart cytochrome c: III. A kinetic study of the non-enzymatic deamidation of the main subfractions (Cy I — Cy III), Acta Chem. Scand., 20:1487.

    Article  PubMed  CAS  Google Scholar 

  • Freitag, C. and Clarke S., 1981, Reversible methylation of cytoskeletal and membrane proteins in intact human erythrocytes, J. Biol. Chem., 256:6102.

    PubMed  CAS  Google Scholar 

  • Gagnon, C., and Heisler, S., 1979, Protein carboxyl-methylation: Role in exocytosis and Chemotaxis, Life Sci., 25:993.

    Article  PubMed  CAS  Google Scholar 

  • Galletti, P., Ingrosso, D., Iardino, P., Manna, C., Pontoni, G., and Zappia, V., 1986, Enzymatic basis for the calcium-induced decrease of membrane protein methyl esterification in intact erythrocytes: Evidence for an impairment of S-adenosylmethionine synthesis, Eur. J. Biochem.. 154:489.

    Article  PubMed  CAS  Google Scholar 

  • Galletti, P., Ingrosso, D., Nappi, A., Gragnaniello, V., Iolascon, A., Pinto, L., 1983, Increased methyl esterification of membrane proteins in aged red blood cells: Preferential esterification of ankyrin and Band 4.1 cytoskeletal proteins, Eur. J. Biochem., 135:25.

    Article  PubMed  CAS  Google Scholar 

  • Geiger, T. and Clarke, S., 1987, Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides: Succinimide-linked reactions that contribute to protein degradation, J. Biol. Chem., 262:785.

    PubMed  CAS  Google Scholar 

  • Ishibashi, Y., Sakagami, Y., Isogai, A., and Suzuki, XT, 1984, Tremergogens A-9291-I and A-9291-VIII: Peptidyl sex hormones of Tremella brasiliensis, Biochemistry, 23:1399.

    Article  CAS  Google Scholar 

  • Johnson, B. A., and Aswad, D. W., 1985, Enzymatic protein carboxyl methylation at physiological pH: Cyclic imide formation explains rapid methyl turnover, Biochemistry, 24:2581.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, B. A., Freitag, N. E., and Aswad, D. W., 1985, Protein carboxyl methyltransferase selectively modifies an atypical form of calmodulin: Evidence for methylation at deamidated asparagine residues, J. Biol. Chem., 260:10913.

    PubMed  CAS  Google Scholar 

  • Johnson, B. A., Murray, E. D., Jr., Clarke, S., Glass, D. B., and Aswad, D. W., 1987a, Protein carboxyl methyltransferase facilitates conversion of atypical L-isoaspartyl peptides to normal L-aspartyl peptides, J. Biol. Chem., 262:5622.

    PubMed  CAS  Google Scholar 

  • Johnson, B. A., Langmack, E. L., and Aswad, D. W., 1987b, Partial repair of deamidation-damaged calmodulin by protein carboxyl methyltransferase, J. Biol. Chem., 262:in press.

    Google Scholar 

  • Kleene, S. J., Hobson, A. C., and Adler, J., 1979, Isolation of glutamic acid methyl ester from an Escherichia coli membrane protein involved in Chemotaxis, J. Biol. Chem., 252:3214.

    Google Scholar 

  • Lewis, U. J., Singh, R. N. P., Bonewald, L. F., and Seavey, B. K., 1981, Altered proteolytic cleavage of human growth hormone as a result of deamidation, J. Biol. Chem., 256:11645.

    PubMed  CAS  Google Scholar 

  • Lou, L. L. and Clarke, S., 1987, Enzymatic methylation of Band 3 anion transporter in intact human erythrocytes, Biochemistry, 26:52.

    Article  PubMed  CAS  Google Scholar 

  • Lowenson, J., and Clarke, S., 1987, Protein carboxyl methyltransferase from human erythrocytes: Substrate specificity with L-isoaspartyl and D-aspartyl-containing peptides and proteins, Fed. Proc., in press.

    Google Scholar 

  • McFadden, P. N., and Clarke, S., 1982, Methylation at D-aspartyl residues in red cells: A possible step in the repair of aged membrane proteins, Proc. Natl. Acad. Sci. U. S. A., 79:2460.

    Article  PubMed  CAS  Google Scholar 

  • McFadden, P. N., and Clarke, S., 1986, Chemical conversion of aspartyl peptides to isoaspartyl peptides: A method for generating new methyl-accepting substrates for the erythrocyte D-aspartyl/L-isoaspartyl protein methyltransferase, J. Biol. Chem., 261:11503.

    PubMed  CAS  Google Scholar 

  • McFadden, P. N., and Clarke, S., 1987, Conversion of isoaspartyl peptides to normal peptides: Implications for the cellular repair of aged membrane proteins, Proc. Natl. Acad. Sci. U. S. A., 84:2595.

    Article  PubMed  CAS  Google Scholar 

  • Midelfort, C. F., and Mehler, A. H., 1972, Deamidation in vivo of an asparagine residue of rabbit muscle aldolase, J. Biol. Chem., 247:3618.

    PubMed  CAS  Google Scholar 

  • Momand, J., and Clarke, S., 1987, Rapid degradation of D- and L-succinimide peptides by a post-proline endopeptidase in human erythrocytes, submitted for publication.

    Google Scholar 

  • Moo-Penn, W., Jue, D. L., Bechtel, K. C., Johnson, M. H., Schmidt, R. M., McCurdy, P. R., Fox, J., Bonaventura, J., Sullivan, B., and Bonaventura, C., 1976, Hemoglobin Providence: A human hemoglobin variant occurring in two forms in vivo, J. Biol. Chem., 251:7557.

    PubMed  CAS  Google Scholar 

  • Murray, E. D., Jr., and Clarke, S., 1984, Synthetic peptide substrates for the erythrocyte protein carboxyl methyltransferase: Detection of a new site of methylation at isomerized L-aspartyl residues, J. Biol. Chem., 259:10722.

    PubMed  CAS  Google Scholar 

  • Murray, E. D., Jr., and Clarke, S., 1986, Metabolism of a synthetic L-isoaspartyl-containing hexapeptide in erythrocyte extracts: Enzymatic methyl esterification is followed by nonenzymatic succinimide formation, J. Biol. Chem., 261:310.

    Google Scholar 

  • Nemethy, G., and Scheraga, H. A., 1977, Protein folding, Quart. Rev. Biophys., 10:239.

    Article  CAS  Google Scholar 

  • Nowlin, D. M., Nettleton, D. O., Ordal, G. W., and Hazelbauer, G. L., 1985, Chemotactic transducer proteins of Escherichia coli exhibit homology with methyl-accepting proteins from distantly related bacteria, J. Bacteriol., 163:262.

    PubMed  CAS  Google Scholar 

  • O’Connor, C. M., 1987, Regulation and subcellular distribution of a protein methyltransferase and its damaged aspartyl substrate sites in developing Xenopus oocytes, J. Biol. Chem., 262:in press.

    Google Scholar 

  • O’Connor, C. M., Aswad, D. W., and Clarke, S., 1984, Mammalian brain and erythrocyte carboxyl methyltransferases are similar enzymes that recognize both D-aspartyl and L-isoaspartyl residues in structurally altered protein substrates, Proc. Natl. Acad. Sci. U. S. A., 81:7757.

    Article  PubMed  Google Scholar 

  • O’Connor, C. M., and Clarke, S., 1983, Methylation of erythrocyte membrane proteins at extracellular and intracellular D-aspartyl sites in vitro: Saturation of intracellular sites in vivo, J. Biol. Chem., 258:8485.

    PubMed  Google Scholar 

  • O’Connor, C. M., and Clarke, S., 1984, Carboxyl methylation of cytosolic proteins in intact human erythrocytes: Identification of numerous methyl-accepting proteins including hemoglobin and carbonic anhydrase, J. Biol. Chem., 259:2570.

    PubMed  Google Scholar 

  • O’Connor, C. M., and Clarke, S., 1985a, Specific recognition of altered polypeptides by widely distributed methyltransferases, Biochem. Biophys. Res. Commun., 132:1144.

    Article  PubMed  Google Scholar 

  • O’Connor, C. M., and Clarke, S., 1985b, Analysis of erythrocyte protein methyl esters by two-dimensional gel electrophoresis under acidic separating conditions, Anal. Biochem., 148:79.

    Article  PubMed  Google Scholar 

  • O’Dea, R. F., Viveros, O. H., Diliberto, E. J. Jr., 1981, Protein carboxymethylation — Role in the regulation of cell functions, Biochem. Pharmacol., 30:1163.

    Article  PubMed  Google Scholar 

  • Ota, I. M., Ding, L., and Clarke, S., 1987, Methylation at specific altered aspartyl and asparaginyl residues in glucagon by the erythrocyte protein carboxyl methyltransferase, J. Biol. Chem., 262:in press.

    Google Scholar 

  • Paik, W. K., and Kim S., 1980, “Protein Methylation,” Wiley, New York, pp. 202–231.

    Google Scholar 

  • Sibanda, B. L., and Thornton, J. M., 1985, Beta-Hairpin families in globular proteins, Nature, 316:74.

    Article  Google Scholar 

  • Stock, J. and Simms, S., 1987, Methylation, demethylation, and dearaidation at glutamate residues in membrane chemoreceptor proteins, this volume.

    Google Scholar 

  • Stock, J. and Stock, A., 1987, What is the role of receptor methylation in bacterial Chemotaxis?, Trends Biochem. Sci., 12:in press.

    Google Scholar 

  • Svasti, J., and Milstein, C., 1972, The complete amino acid sequence of a mouse kappa light chain, Biochem. J., 128:427.

    PubMed  CAS  Google Scholar 

  • Terwilliger, T. C., and Clarke, S., 1981, Methylation of membrane proteins in human erythrocytes: Identification and characterization of polypeptides methylated in lysed cells, J. Biol. Chem., 256:3067.

    PubMed  CAS  Google Scholar 

  • Van der Werf, P., and Koshland, D. E. Jr., 1977, Identification of a gamma-glutamyl methyl ester in bacterial membrane protein involved in Chemotaxis, J. Biol. Chem., 252:2793.

    Google Scholar 

  • Voorter, C. E. M., Mulders, J. W. M., Bloemendal, H., and de Jong, W. W., 1987, Phosphorylation and deamidation of the eye lens protein alpha-crystallin, this volume.

    Google Scholar 

  • Wilson, J. M., Landa, L. E., Kobayashi, R, and Kelley, W. N., 1982, Human hypoxanthine-guanine phosphoribosyltransferase: Post-translational modification of the erythrocyte enzyme, J. Biol. Chem., 257:14830.

    PubMed  CAS  Google Scholar 

  • Yuan, P. M., Talent, J. M., and Gracy, R. W., 1981, Molecular basis for the accumulation of acidic isozymes of triosephosphate isomerase on aging, Mechan. Ageing Develop., 17:151.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clarke, S. (1988). Perspectives on the Biological Function and Enzymology of Protein Carboxyl Methylation Reactions in Eucaryotic and Procaryotic Cells. In: Zappia, V., Galletti, P., Porta, R., Wold, F. (eds) Advances in Post-Translational Modifications of Proteins and Aging. Advances in Experimental Medicine and Biology, vol 231. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9042-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9042-8_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9044-2

  • Online ISBN: 978-1-4684-9042-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics