Skip to main content

Post-Translational Modifications of Cellular Proteins by Polyamines and Polyamine-Derivatives

  • Chapter
Advances in Post-Translational Modifications of Proteins and Aging

Part of the book series: Advances in Experimental Medicine and Biology ((NATO ASI F,volume 231))

Abstract

The aliphatic polyamines putrescine, spermidine and spermine are contituents of all living organisms. Prokaryotes and eukaryotes are able to synthesize putrescine and spermidine, while spermine is confined to nucleated cells (1–4). The physiological role of these amines is not completely understood, although many studies have clarified their metabolism and some relevant aspects of their regulation (1–4). Polyamine synthesis often precedes that of DNA, RNA and proteins indicating their possible involvement in the regulation of these events (2). In fact the enzyme activities of polyamine biosynthesis and catabolism and the amine concentration were found to vary in rapidly proliferating tissues and during cellular differentiation both in vivo and in vitro (1–4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Heby, Role of polyamines in the control of cell proliferation and differentiation, Differentiation 19:1 (1981).

    Article  PubMed  CAS  Google Scholar 

  2. A.E. Pegg, and P.P. McCann, Polyamine metabolism and function Am. J. Physiol. 243:C212 (1982).

    PubMed  CAS  Google Scholar 

  3. C.W. Tabor, and H. Tabor, Polyamines, Ann. Rev. Biochem. 53:749 (1984).

    Article  PubMed  CAS  Google Scholar 

  4. A.E. Pegg, Recent advances in the biochemistry of the polyamines in eukaryotes Biochem J. 234:249 (1986).

    PubMed  CAS  Google Scholar 

  5. O.M. Rennert, W.Y. Chan, and G. Griesmann, Polyamine-peptide conjugates: proposed function Physiol. Chem. Physics 12:441 (1980).

    CAS  Google Scholar 

  6. G.H. Williams-Ashman, Transglutaminase and the clotting of mammalian seminal fluids Mol. Cell. Biochem. 58:51 (1984).

    Article  PubMed  CAS  Google Scholar 

  7. E.S. Canellakis, D. Viceps-Madore, D.A. Kyriakidis, and J.S. Heller, The regulation and function of ornithine decarboxylase and of the polyamine, in:“Current Topics in Cellular Regulation,” B.L. Horecker and E.R. Stadtman, eds., Academic Press, New York (1979).

    Google Scholar 

  8. N. Seiler, F.N. Bolkenius, and O.M. Rennert, Interconversion, catabolism and elimination of the polyamines, Med. Biol. 5:334 (1981).

    Google Scholar 

  9. E. Holtta, Oxidation of spermidine and spermine in rat liver: purification and properties of polyamine oxidase, Biochemistry 16:91 (1977).

    Article  PubMed  CAS  Google Scholar 

  10. N. Seiler, and M.J. Al-Therib, Putrescine catabolism in mammalian brain, Biochem. J., 144:29 (1974).

    PubMed  CAS  Google Scholar 

  11. G. Quash, T. Keolouangkhot, L. Gazzolo, H. Ripoll, and S. Saez, Diamine oxidase and polyamine oxidase activities in normal and trasformed cells Biochem. J. 177:275 (1979).

    PubMed  CAS  Google Scholar 

  12. P.S. Mamont, P. Bohlen, P.P. McCann, P. Bey, F. Schuber, and C. Tardif, α-Methylornithine a potent competitive inhibitor of ornithine decarboxylase blocks proliferation of rat hepatoma cells in culture, Proc. Natl. Acad. Sci. USA 73:1626 (1976).

    Article  PubMed  CAS  Google Scholar 

  13. P.S. Mamont, M.C. Duchesne, J. Grove, and P. Bey, Anti-proliferative properties of DL-α-difluoromethylornithine in cultured cells. A consequence of the irreversible inhibition of ornithine decarboxylase, Biochem. Biophys. Res. Commun. 81:58 (1978).

    Article  PubMed  CAS  Google Scholar 

  14. G.H. Williams-Ashmann, and A. Schenone, Methylglyoxal bis (guanylhydrazone) as a potent inhibitor of mammalian and yeast S-adenosylmethionine decarboxylase, Biochem. Biophys. Res. Commun. 46:288 (1972).

    Article  Google Scholar 

  15. A. Kallio, and J. Janne, Role of diamine oxidase during the treatment of tumor-bearing mice with combinations of polyamine anti-metabolite, Biochem. J. 212:895 (1983).

    PubMed  CAS  Google Scholar 

  16. W.G. Bardsley, Inhibitors of copper amine oxidases, in “Structure and functions of amine oxidases,” B. Mondovi’, ed., CRC Press Inc., Boca Raton (1985).

    Google Scholar 

  17. M.H. Park, H.L. Cooper, and J.E. Folk, The biosynthesis of protein--bound hypusine (Nε-(4-Amino-2-hydroxybutyl) Lysine), J. Biol. Chem. 257:7217 (1982).

    PubMed  CAS  Google Scholar 

  18. H.L. Cooper, M.H. Park, and J.E. Folk, Posttranslational formation of hypusine in a single major protein occurs generally in growing cells and is associated with activation of lymphocyte growth, Cell 29:791 (1982).

    Article  PubMed  CAS  Google Scholar 

  19. T. Nakajima, Y. Kakimoto, N. Tsuji, and H. Konishi, Occurrence and formation of γ-glutamylputrescine in mammalian brain, J. Neurochem. 26:115 (1976).

    PubMed  CAS  Google Scholar 

  20. M.H. Park, S.I. Chung, H.L. Cooper, and J.E. Folk, The mammalian hypusine-containing protein eukaryotic initiation factor 4D. Structural homology of the protein from several species, J. Biol. Chem. 259:4563 (1984).

    PubMed  CAS  Google Scholar 

  21. A. Abbruzzese, M.I. Park, and J.E. Folk, Deoxyhypusine hydroxylase from rat testis, J. Biol. Chem. 261:3085 (1986).

    PubMed  CAS  Google Scholar 

  22. H.L. Cooper, M.H. Park, J.E. Folk, B. Safer, and R. Braverman, Identification of the hypusine-containing protein Hy+ as translation initiation factor eIF-4D, Proc. Natl. Acad. Sci. USA 80:1854 (1983).

    Article  PubMed  CAS  Google Scholar 

  23. J.E. Folk, Transglutaminases, Annu. Rev. Biochem. 49:517 (1980).

    Article  PubMed  CAS  Google Scholar 

  24. J.E. Folk, M.H. Park, S.I. Chung, J. Schrode, E.P. Lester, and H.L. Cooper, Polyamines as physiological substrates for transglutaminases, J. Biol. Chem. 255:3695 (1980).

    PubMed  CAS  Google Scholar 

  25. J.E. Folk, Mechanism and basis for specificity of transglutaminase-catalyzed ε-(γ-glutamyl)lysine bond formation, _in “Advances in enzymology and related areas in molecular biology,” A. Meister, ed., Wiley and Sons, New York (1983).

    Google Scholar 

  26. S. Beninati, M. Piacentini, M.P. Argento-Ceru’, S. Russo-Caia, and F. Autuori, Presence of di- and polyamines covalently bound to protein in rat liver, Biochim. Biophys. Acta 841:120 (1985).

    Article  PubMed  CAS  Google Scholar 

  27. H.G. Williams-Ashman, and Z.N. Canellakis, Transglutaminase-mediated covalent attachment of polyamines to proteins: mechanism and potential physiological significance, Physiol. Chem. Physics 12:457 (1980).

    CAS  Google Scholar 

  28. D.H. Russell, Posttranslational modification of ornithine decarboxylase by its product putrescine, Biochem. Biophys. Res. Commun. 99:1167 (1981).

    Article  PubMed  CAS  Google Scholar 

  29. K.F.F. Scott, F.L. Meyskens, and D.H. Russell, Retinoids increase transglutaminase activity and inhibit ornithine decarboxylase activity in Chines hamster ovary cells and in melanoma cells stimulated to differentiate, Proc. Natl. Acad. Sci. USA 79:4093 (1982).

    Article  PubMed  CAS  Google Scholar 

  30. M. Piacentini, C. Sartori, S. Beninati, A.M. Bargagli, and M.P. Argento-Ceru’, Ornithine decarboxylase, transglutaminase, diamine oxidase and total diamines and polyamines in maternal liver and kidney throughout rat pregnancy, Biochem. J. 234:435 (1986).

    PubMed  CAS  Google Scholar 

  31. F. Leuven, Human α-macroglobulin, Mol. Cell. Biochem. 58:121 (1984).

    Article  PubMed  Google Scholar 

  32. M. Fink, and J.E. Folk, γ-Glutamylamine Cyclotransferase, Methods Enzymol. 94:347 (1983).

    PubMed  CAS  Google Scholar 

  33. D.D. Clark, M.J. Mycek, A. Neidle, and H. Waelsch, The incorporation of amines into protein, Arch. Biochem. Biophys. 79:338 (1959).

    Article  Google Scholar 

  34. M.H. Park, H.L. Cooper, and J.E. Folk, Identification of hypusine, an unusual amino acid, in a protein from human lymphocytes and of spermidine as its biosynthetic precursor, Proc. Natl. Acad. Sci. USA 78:2869 (1981).

    Article  PubMed  CAS  Google Scholar 

  35. K.Y. Chen, An 18,000-dalton protein metabolically labeled by polyamine in various mammalian cell lines, Biochim. Biophys. Acta 756:395 (1983).

    Article  PubMed  CAS  Google Scholar 

  36. E.W. Gerner, P.S. Mamont, A. Bernhardt, and N. Siat, Posttranslational modification of the protein-synthesis initiation factor eIF-4D by spermidine in rat hepatoma cells, Biochem. J, 239: 12 (1986).

    Google Scholar 

  37. R.F. Duncan, and J.W.B. Hershey, Changes in eIF-4D hypusine modification or abundance are not correlated with translational repression in Hela cells, J. Biol. Chem. 261:12903 (1986).

    PubMed  CAS  Google Scholar 

  38. S. Beninati, M. Piacentini, and F. Autuori, Post-translational modification of glycerol insoluble proteins by [3H]-putreseine in CHO cells, Biol. Chem. Hoppe-Seyler 367:374S(1986).

    Google Scholar 

  39. M.K. Haddox, and D. Haddock Russell, Differential conjugation of polyamines to calf nuclear and nucleolar proteins, J. Cell. Physiol. 109:447 (1981).

    Article  PubMed  CAS  Google Scholar 

  40. M.K. Haddox, and D. Haddock Russell, Increased nuclear conjugated polyamines and transglutaminase during liver regeneration, Proc. Natl. Acad. Sci. USA, 78:1712 (1981).

    Article  PubMed  CAS  Google Scholar 

  41. L. Cariello, J. Wilson, and L. Lorand, Activation of transglutaminase during embryonic development, Biochemistry 23:6843 (1984).

    Article  PubMed  CAS  Google Scholar 

  42. Z.N. Canellakis, P.K. Bondy, and A.A. Infante, Spermidine is bound to a unique protein in early sea urchin embryos, Proc. Natl. Acad. Sci. USA 82:7613 (1985).

    Article  PubMed  CAS  Google Scholar 

  43. H. Hennings, D. Michael, C. Cheng, P. Steinert, K. Holbrook, and S.H. Yuspa, Calcium regulation of growth and differentiation of mouse epidermal cells in culture, Cell 19:245 (1980).

    Article  PubMed  CAS  Google Scholar 

  44. L. Fesus, E.F. Szucs, K.E. Barrett, D.D. Metcalfe, and J.E. Folk, Activation of transglutaminase and production of protein-bound γ-glutamylhistamine in stimulated mouse mast cells, J. Biol. Chem. 260:13771 (1985).

    PubMed  CAS  Google Scholar 

  45. J. Schindler, Retinoids, polyamines and differentiation, in “Retinoids and cell differentiation,” M.I. Sherman, ed., CRC Press, Boca Raton (1986).

    Google Scholar 

  46. K. Kapyaho, and K.J. Janne, Stimulation of melanotic expression in murine melanoma cells exposed to polyamine antimetabolites, Biochem. Biophys. Res. Commun. 113:18 (1983).

    Article  PubMed  CAS  Google Scholar 

  47. O. Heby, S.M. Oredsson, I. Olsson, and L.J. Marton, A role for the polyamines in mouse embryonal carcinoma (F9 and PCC3) cell differentiation but not in human promyelocytic leukemia (HL-60) cell differentiation, Adv. Polyamine Res. 4:727 (1983).

    CAS  Google Scholar 

  48. J. Schindler, M. Kelly, and P.P. McCann, Inhibition of ornithine decarboxylase induces embryonal carcinoma cell differentiation, Biochem. Biophys. Res. Commun. 114:410 (1983).

    Article  PubMed  CAS  Google Scholar 

  49. H. Green, The keratinocyte as differentiated cell type, The Harvey Lectures series 74:101 (1979).

    Google Scholar 

  50. J. Kubilus, and H.P. Baden, Isopeptide bond formation in epidermis, Mol. Cell. Biochem. 58:129 (1984).

    Article  PubMed  CAS  Google Scholar 

  51. L.L. Peterson, and K.D. Wuepper, Epidermal and hair follicle transglutaminases and crosslinking in skin, Mol. Cell. Biochem. 58:99 (1984).

    Article  PubMed  CAS  Google Scholar 

  52. Z. Nakos-Canellakis, L.L. Marsh, P. Young, and P.K. Bondy, Polyamine metabolism in differentiating friend erythroleukemia cells, Cancer Res. 44:3841 (1984).

    Google Scholar 

  53. A.Y. Jeng, U. Lichti, J.E. Strickland, and P.M. Blumberg, Similar effect of phospholipase C and phorbol ester tumor promoters on primary mouse epidermal cells, Cancer Res. 45:5714 (1985).

    PubMed  CAS  Google Scholar 

  54. M. Piacentini, N. Martinet, S. Beninati, S Strong, and J.E. Folk, Di-and polyamines metabolism during mouse epidermal cell differentiation, J. Cell Biol. 103:327a(1986).

    Google Scholar 

  55. R.T. Ambron, and L.T. Kremzner, Post-translational modification of neuronal proteins: evidence for transglutaminase activity in R2, the giant cholinergis neuron of Aplysia, Proc. Natl. Acad. Sci. USA 79:3442 (1982).

    Article  PubMed  CAS  Google Scholar 

  56. M. Piacentini, and S. Beninati, γ-glutamylamine derivatives in isolated rat hepatocytes protein, paper in preparation.

    Google Scholar 

  57. E.T. Cocuzzi, M. Piacentini, S. Beninati, and S.I. Chung, Apolipoprotein are substrates for transglutaminase, Atherosclerosis in press.

    Google Scholar 

  58. R.B. Maccioni, and N.W. Seeds, Transglutaminase and neuronal differentiation, Mol. Cell. Biochem. 69:161 (1986).

    Article  PubMed  CAS  Google Scholar 

  59. K.Y. Chen, Transglutaminase catalyzed incorporation of putrescine into surface proteins of mouse neuroblastoma cells, Mol. Cell. Biochem. 58:91 (1984).

    Article  PubMed  CAS  Google Scholar 

  60. G.A. Quash, A. Nivelaau, M. Aupoix, and M. Greenland, Immunolatex visualisation of cell surface Forssman and polyamine antigens, Exp. Cell Res. 98:253 (1976).

    Article  PubMed  CAS  Google Scholar 

  61. K.H. Lee-Hsu, and H. Friedman, Dexamethasone inhibition of DMSO induced transglutaminase activity and differentiation of leukemic cells, Proc. Soc. Exp. Biol. Med. 175:205 (1984).

    Article  Google Scholar 

  62. P.J. Birckbichler, G.R. Orr, M.K. Patterson, E. Conway, and H.A. Carter, Increase in proliferative markers after inhibition of transglutaminase, Proc. Natl. Acad. Sci. USA 78:5005 (1981).

    Article  PubMed  CAS  Google Scholar 

  63. P.J. Birckbichler, and M.K. Patterson, Cellular transglutaminase, growth and trasformation Ann. N.Y. Acad. Sci. 312:354 (1978).

    Article  PubMed  CAS  Google Scholar 

  64. P. Pohjanpelto, I. Virtanen, and E. Holtta, Polyamine starvation causes disappearance of actin filaments and microtubules in polyamine-auxotrophic CHO cells, Nature 293:475 (1981).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Piacentini, M., Ceru’-Argento, M.P., Farrace, M.G., Autuori, F. (1988). Post-Translational Modifications of Cellular Proteins by Polyamines and Polyamine-Derivatives. In: Zappia, V., Galletti, P., Porta, R., Wold, F. (eds) Advances in Post-Translational Modifications of Proteins and Aging. Advances in Experimental Medicine and Biology, vol 231. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9042-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9042-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9044-2

  • Online ISBN: 978-1-4684-9042-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics