Skip to main content

Stabilization of Lipid Microstructures: Fundamentals and Applications

  • Chapter
Targeting of Drugs 2

Part of the book series: NATO ASI Series ((NSSA,volume 199))

Abstract

The thermotropic and lyotropic phase behavior of components that comprise lipid assemblies such as liposomes results in an inherent instability of these structures when exposed to extremes of temperature and hydration. This can present significant limitations to their successful application. As liposomes and other macroassemblies of lipid molecules progress toward application, considerable efforts have been made to improve the stability of these structures. We can define stabilization of lipid microstructures as the ability to withstand chemical, mechanical, or thermal extremes which may be encountered in the variety of applications that are being pursued. In particular, the definition of stabilization for drug delivery and slow release purposes should include increased persistence in the body and avoidance of the reticular endothelial system (RES) which will result in enhanced activity of encapsulants in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahl, P., Singh, A., Price, R., Snuda, J. and Gaber, B.P., 1989, Insertion of bacteriorhodopsin into polymerized diacetylenic phosphatidylcholine bilayers, Biophys.J., 55:321a.

    Google Scholar 

  • Beissinger, R.L., Farmer, M.C. and Gossage, J.L., 1986, Liposome encapsxil- ated hemoglobin as a red cell surrogate: preparation scale-up, Trans.Am.Soc.Artif.org., 32:58.

    CAS  Google Scholar 

  • Burke, T.G., Singh, A. and Yager, P., 1987, Entrapment of 6-carboxy fluorescein within cylindrical phospholipid microstructures, Ann.N.Y.Acad. Sci.USA, 507:330.

    Article  Google Scholar 

  • Burke, T.G., Rudolph, A.S., Sheridan, J.P., Dalziel, A., Singh, A. and Schoen, P.E., 1988, Calorimetric study of novel phase behavior of a phosphatidylcholine containing diacetylenes, Chem. Phys. Lipids, 48:215.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter, J.F., Crowe, J.H. and Crowe, L.M., 1988, Stabilization of phos- phofructokinase with sugars during freeze-drying, Biochem. Biophys. Acta, 923:109.

    Article  Google Scholar 

  • Crowe, J.H., Crowe, L.M. and Jackson, S.A., 1983, Preservation of structure and functional activity in lyophilized sarcoplasmic reticulum, Arch.Biochem.Biophys. 220:477.

    Article  CAS  PubMed  Google Scholar 

  • Crowe, J.H., Crowe, L.M. and Chajxiian, D., 1985, Interaction of carbohydrates with dry dipalmitoyl phosphatidylcholine. Arch.Biochem.Biophys., 236:289.

    Article  CAS  PubMed  Google Scholar 

  • Crowe, L.M., Womersley, C., Crowe, J.H., Reid, D., Appel, L. and Rudolph, A.S., 1986, Prevention of fusion and leakage in freeze-dried liposomes by carbohydrates, Biochim.Biophys.Acta, 861:131.

    Article  CAS  Google Scholar 

  • Crowe, J.H., Crowe, L.M., Carpenter, J.F., Rudolph, A.S., Winstrom, C.A., Spar go, B. and Anchordougy, T.J., 1988, Interactions of sugars with membranes, Biochim.Biophys, Acta, 947:367.

    Article  CAS  Google Scholar 

  • Kusumi, A., Sing, M., Tirrell, D.A., Oehme, G., Singji, A., Samuel, N.K.P., Ifyde, J.S. and Regen, S.L., 1983, Dynamic and structural properties of polymerized phosphatidylcholine vesicles membranes, J.Amer.Chem. Soc. 105:2975.

    Article  CAS  Google Scholar 

  • Lee, C.W.B., Waugh, J.S. and Griffin, R.G., 1986, Solid-state NMR study of trehalose/1,2-dipalmitoyl-sn-phosphatidylcholine interactions, Biochem. 25:3737.

    Article  CAS  Google Scholar 

  • Lee, C.B.W., Das Gupta, S.K., Mattai, J., Shipley, G.G., Abdel-Mageed, A., Makriyannis, A. and Griffin, R.G., 1989, Characterization of the L phase in trehalose stabilized dry membranes by solid-state NMR and x- ray diffraction, Biochm., 28:5000.

    Article  CAS  Google Scholar 

  • Ligler, F.S., Fare, T.L., Scib, K.D., Smida, J.W., Singji, A., Ayers, M.E., Dalziel, A. and Yager, P., 1988, Fabrication of key components of receptor based biosensor, Med.Inst., 22:247.

    CAS  Google Scholar 

  • O’Brien, D.F., Whitesides, T.H. and Klingbiel, R.T., 1981, The photopoly- merization of lipid-diacetylenes in biomolecular-layer membranes, J.Polym.Sci: Pölym.Letts.Ed., 19:95.

    Google Scholar 

  • Rhodes, D.G., Blechner, S.L., Yager, P. and Schoen, P.E., 1988, Structure of polymerizable lipid bilayers. I- l,2-bis(10,12-tricosadiynoyl)-sn- glycero-3-phosphocholine, a tubule forming phosphatidylcholine, Chem.Phys.Upids. 49:39.

    CAS  Google Scholar 

  • Rudolph, A.S., 1988, The freeze-dried preservation of liposome encapsulated hemoglobin: a potential blood substitute, Cryobiology, 25:277.

    Article  CAS  PubMed  Google Scholar 

  • Rudolph, A.S. and Burke, T.G., 1987, A Fourier-transform infrared spectroscopic study of the polymorphic phase behavior of 1,2 bis(tricosa- 10,12-diynoyl)-sn-3-phosphocholine; a polymerizable lipid which forms novel microstructures, Biochim. Biophys Acta, 902:345.

    Google Scholar 

  • Rudolph, A.S., Crowe, L.M. and Crowe, J.H., 1986, The effects of three stabilizing agents: proline, betaine, and trehalose on membrane phospholipids, Arch.Biochem.Biophys., 245:134.

    Article  CAS  PubMed  Google Scholar 

  • Rudolph, A.S., Schnur, J.M., Singh, A., 1988a, The stabilization of a polymerizable lecithin with carbohydrates, Biophys. J., 53:120a.

    Google Scholar 

  • Rudolph, A.S., Singh, B.P., Singh, A. and Burke, T.G., 1988b, Phase characteristics of positional isomers of 1,2-bis heptacosadipoyl-sn- glycero-3-phosphocholine; tubule forming phosphatidylcholines, Biochim.Biophys.Acta, 943:454.

    Article  CAS  PubMed  Google Scholar 

  • Rudolph, B., Chandrashekar, I., Gaber, B.P. and Nagumo, M., 1990, Molecular modelling of saccharide-lipid interactions, Chem.Phys.Lipids, in press.

    Google Scholar 

  • Rudolph, A.S., Calvert, J.M., Schoen, P.E. and Schnur, J.M., 1989, Technological development of lipid based tubule microstructures, in: “Technological Applications of Lipid Microstructures”, Advances in Experimental Medicine and Biology Series, vol. 238, B.P. Gaber, J.M. Schnur and D. Chapman, eds., Plenum Press, N.Y.

    Google Scholar 

  • Schoen, P.E. and Yager, P., 1985, Spectroscopic studies of polymerized surfactants: 1,2-bis (10,12-tricosadiynoyl)-sn glycero-3-phosphocholine, J.Polly.Sci:Polym.Phys.Ed., 23:2203.

    CAS  Google Scholar 

  • Singh, A. and Schnur, J.M., 1985, Polymerized diacetylenic phosphatidylcholine vesicles: synthesis and characterization. Polymer Preprints, 26(2):184.

    CAS  Google Scholar 

  • Singh, A. and Schnur, J.M., 1988, Self-assembled microstructures from a polymerizable ammonium surfactant: Di (Hexacosa-12,14-Diynyl) dimethyl ammonium bromide, J.Chem.Soc.,Chem.Conni., 1222–1223.

    Google Scholar 

  • Singh, A. and Gaber, B.P., 1988, Influence of short chain lipid spacers on the properties of diacetylenic phosphatidylcholine bilayers, in: “Applied Bioactive Polymeric Materials”, C.G. Gebelein, C.E. Carraher, Jr. and V.R. Foster, eds., Plenum Press, N.Y.

    Google Scholar 

  • Singh, A., Thompson, R.B. and Schnur, J.M., 1986, Reversible thermochromismin photopolymerized phosphatidylcholine vesicles, J.Amer.Chem.Soc. 108:2785.

    Article  CAS  Google Scholar 

  • Singh, A., Price, R., Schoen, P.E. Yager, P. and Schnur, J.M., 1986, Tubule formation by heterobifunctional polymerizable lipids: synthesis and characterization. Polymer Preprints, 27(2):393.

    CAS  Google Scholar 

  • Tanford, C., 1981, “The Ifydrophobic Effect”, John Wiley and Sons, N.Y.

    Google Scholar 

  • Yager, P. and Schoen, P.E., 1984, Formation of tubules by a polymerizable surfactant, Mol.Cryst.Liq.Cryst., 106:371.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Rudolph, A.S., Singh, A., Price, R.R., Goins, B., Gaber, B.P. (1990). Stabilization of Lipid Microstructures: Fundamentals and Applications. In: Gregoriadis, G., Allison, A.C., Poste, G. (eds) Targeting of Drugs 2. NATO ASI Series, vol 199. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-9001-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9001-5_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-9003-9

  • Online ISBN: 978-1-4684-9001-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics