Skip to main content

Large Wind Turbine Systems Seen from the European Viewpoint

  • Chapter
  • 231 Accesses

Abstract

Windmills have been used for more than 4,000 years, but only in this century has the knowledge of aerodynamics been able to provide the tools necessary to gain a high performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Betz. 1926. Wind-Energie und ihre Ausnutzung durch Windmühlen. In: Naturwissenschaft und Technik. Vol. 2. Göttingen: Vandenhoeck und Ruprecht.

    Google Scholar 

  2. H. dauert. 1935. Aerodynamic theory. Vol. 6. Division L. Berlin: Julius Springer.

    Google Scholar 

  3. K. König. 1982. Vibrational and aeroelastic problems of large WECs and their computerized solution. Internal MBB-VFW Report. Bremen.

    Google Scholar 

  4. Technical specification for design and installation of wind turbine systems in Sweden. 1978. NE, Stockholm.

    Google Scholar 

  5. M.A. Miner. 1945. Cumulative damage in fatigue. Trans, of AS ME Journal of Applied Mechanics.

    Google Scholar 

  6. U. Hütter. 1974 (July). Betriebserfahrungen mit der 100-kW-Windkraftanlage der StudiengeseU- schaft Windkraft. Brennstoff-Warme-Kraft, Band 16, Nr. 7, pp. 333–340.

    Google Scholar 

  7. 7th meeting of experts—costings for wind turbines. 1982 (Mar.). lEA Impl. Agreement. Jül- Spez-147.

    Google Scholar 

  8. H. Nissen and W. Former. 1973. WirtschaftUch- keit der Stromerzeugung aus Windenergie. Vol. 3. Energiewirtschaftliche Tagesfragen 29.

    Google Scholar 

  9. L. Jarass. 1981. Strom und Wind. Berlin: Springer- Verlag.

    Google Scholar 

  10. A. J. Janssen etal. 1981 (Oct.). Statistical methods for the assessment of wind power integration into the electricity supply system. ECN-101. 1979 (Aug.), Petten/Netherlands

    Google Scholar 

Bibliography General

  • Bonnefille. 1974 (Apr.). Les Réalisations d’Electricité de France Concernant 1’Energie Eolienne Electricité de France F 40/74 Nr. 4.

    Google Scholar 

  • F.R. Eldridge. 1975 (Oct.). Wind machinesThe Mitre Corporation. (Also NSF-RA-N-75–051)

    Google Scholar 

  • E.W. Golding. 1956. The generation of electricity by wind powerNew York: Philosophical Library.

    Google Scholar 

  • H. Honnef. 1932. Windkraftwerke. Braunschweig: Friedrich Vieweg u. Sohn AG.

    Google Scholar 

  • U. Hütter. 1947. Beitrag zur Schaffung von Gestaltungsgrundlagen für Windkraftwerke. Dissertation TH. Wien.

    Google Scholar 

  • L. Jarass. Wind energyNew York: Springer Verlag.

    Google Scholar 

  • J.P. Molly. 1978. Windenergie in Theorie und Praxis. Karlsruhe: Verlag C.F. Müller.

    Google Scholar 

  • J. Juul. 1961. Design of wind power plants in Denmark new sources of energy. Proceedings of The Conference, United Nations. Rome; Aug. 21–31, 1961.

    Google Scholar 

  • P.C. Putman. 1948. Power from the windNew York: D. Van Nostrand Company.

    Google Scholar 

  • D. M. Simmons. 1975. Wind power. Energy Technology Review No. 6. New Jersey: Noyes Data Corporation. 1975.

    Google Scholar 

  • Wind energy report. 1979 (July). New York: Publishing Corporation.

    Google Scholar 

Design

  • J.S. Andrews and J.M. Baskin. 1981. Development tests for the 2.5 megwatt MOD-2 wind turbine generator. WWVVol. 2:611.

    Google Scholar 

  • R.S. Barton and W.C. Lucas. 1981. Conceptual design of the 6 MW M0D-5A wind turbine generator. WWV. Vol. 1:157.

    Google Scholar 

  • A.G. Birchenough et al. 1981. Operating experience with the 200 kW MOD-OA wind turbine generators. WWV. Vol. 1:107.

    Google Scholar 

  • Jens Trampe Broch. 1968. Peak-distribution effects in random-load fatigue. FromEffects of environmentand complex load history on fatigue lifeASTM Special Technical Publication 462, pp. 104–126.

    Google Scholar 

  • G.W. Brown and R. Ikegami. 1970. The fatigue of aluminum alloys subjected to random loading. SESA Spring Meeting. Huntsville, Ala.; May, 1970.

    Google Scholar 

  • A. Cornell. 1%9 (Dec.). A probability-based structural code. ACI Journal

    Google Scholar 

  • S. Doman. 1979. System configuration improvement. Large Wind Turbine Design Characteristics and R & D Requirements. Workshop held at NASA Lewis Research Center; April 24–26, 1979. DOE PubUcation CONF-7904111, p. 385.

    Google Scholar 

  • R.R. Douglas. 1981. Conceptual design of the 7 megawatt MOD-5B wind turbine generator. WWV. 1981. Vol. 1:169.

    Google Scholar 

  • H. A. El Maraghy and J.N. Siddall. 1978. Theoretical prediction and experimental determination of fatigue life distributions of SAE 1008 steel subjected to constant amplitude, block and narrow band random loading. Vol. 5 (No. 3). Trans Canadian Society of Mechanical Engineering. No. 78-CSME-9, EIC Accession No. 1769.

    Google Scholar 

  • J. R. Faddoul. 1981. An overview of large, horizontal axis wind turbine blades. WWVVol. 3: 113.

    Google Scholar 

  • R.W. Finger. 1980. Prediction model for fatigue crack growth in windmill structures. Effect of load spectrum variables on fatigue crack initiation and propagation. D.F. Bryan and J.M. Potter, eds. ASTM STP 714. American Society for Testing and Materials. p. 185 - 204.

    Google Scholar 

  • J.W. Fisher et al. 1974. Fatigue strength of steel beams with welded stiffeners and attachments. Report No. 147. Highway Research Board, Washington, D.C.

    Google Scholar 

  • J.W. Fisher et al. 1970. Effect of weldments on the fatigue of steel beams. Report No. 102. Highway Research Board, Washington, D.C.

    Google Scholar 

  • J.T.D. Fritz. 1977 (Dec). Accumulation of fatigue damage under random loading conditions. National Mechanical Engineering Research Institute. Reference No.: MES/4056, Pretoria, South Africa.

    Google Scholar 

  • T.W. Graham and A. S. Tetelman. The use of crack size distribution and crack detection for determining the probability of fatigue failure. AIAA/ASME/ SAE 15th Structures. Structural Dynamics and Materials Conference. Las Vegas, 1974. AI A A Paper No. 74–394.

    Google Scholar 

  • D. S. Hoddinott. 1974. The effect of random loading near-term correlation on the fatigue behavior of a steel. Engineering Fracture Mechanics6:163–164.

    Google Scholar 

  • U. Hütter. 1977. Optimum wind energy conversion systems. Ann. Rev. Fluid Mech. 9:399–419. Vol. 9, S. 399–319.

    Google Scholar 

  • U. Hütter. 1974. Optimum design concept for wind- electric converters. Workshop on Advanced Wind Energy Systems. Stockholm; Aug. 29, 1974.

    Google Scholar 

  • G. O. Johnston. 1980. Probabilistic fracture mechanics. Symposium on Mechanical Reliability. Edited by T.R. Moss. Guildford, England: IPC Science and Technology Press, p. 8–19.

    Google Scholar 

  • M. Kawamoto; H. Ishikawa; N. Inoue; and Y. Yoshio. 1975. Fatigue test results and fatigue life estimation of hard steel and aluminum alloy under random loads. Bulletin of the JSME18 (No. 122).

    Google Scholar 

  • S.H. Kratz and R.C. Metzger. 1981. High torque drive systems for large wind turbines. WWV. Vol. 3: 89.

    Google Scholar 

  • Large, horizontal axis wind turbine projects. 1981 (Nov.). NTIS #SERI/SP-732–730.

    Google Scholar 

  • P. Lundsager. 1982 (Mar). Experience with the Gedser windmill and small Danish windmills. Risö PLac 02.03.1982.

    Google Scholar 

  • W.E.B. Mason and B.J. Jones. 1981. Reliability and quality assurance on the MOD-2 wind system. WWV. Vol. 2:151.

    Google Scholar 

  • MOD-2 wind turbine system concept and preliminary design report. Vol. 2. 1979 (July). Detailed Report. Boeing Engineering and Construction Company, Contractor Report DOE/NASA 0002–80/2.

    Google Scholar 

  • L.L. Nelson. 1981. Medicine bow wind project. WWVVol. 2:557.

    Google Scholar 

  • J. C. Newman Jr. 1976 (June). Predicting failure of specimens with either surface cracks or comer cracks at holes. NACA TN D-8244.

    Google Scholar 

  • P. Nielsen. 1981. Measurements on the Nibe wind turbines. DEFU, Report No. EEV 81–04.

    Google Scholar 

  • F. Nilsson. 17. A model for fracture mechanical estimation of the failure probability of reactor pressure vessels. 3rd Int. Conf. on Pressure Vessel Technology in TokyoPart II—Materials and Fabrication. New York: American Society of Mech. Engineers, p. 593–601.

    Google Scholar 

  • R. OKvier and W. Ritter. 1979. 1980. 1981. Catalogue of S-N-curves of welded joints in structural steels. Part 1: Butt Joints, Part 2: Transverse Stiffener, Part 3: Cruciform Joint. DVS Berichte 56/MIL Düsseldorf: Deutscher Verlag für Schweisstechnik.

    Google Scholar 

  • A. Plaks et al. 1981 (Jan.). Wind turbine system for high wind regions in California. Consultant report prepared by Boeing Engineering and Construction Company for California Energy Commission. CEC Publication #P500–81-005.

    Google Scholar 

  • A. Raab. 1979. Combined effects of periodic and stochastic loads on the fatigue of wind turbine parts. Aeron. Research Inst, of Sweden. FFA, TN Au- 1499, Stockholm.

    Google Scholar 

  • J. Schijve. 1973. Effect of load sequences on crack propagation under random and program loading. Engineering Fracture Mechanics5:267–280, Per- gamon Press, 1973.

    Google Scholar 

  • S. R. Swanson. 1998. Random load fatigue testing: a state of the art survey. Materials Research & Standards8:10.

    Google Scholar 

  • D.J. White and J. Lewszuk. 1970. (Nov.). Cumulative damage in fretting fatigue of pinned joints subjected to narrow band random loading. The Aeronautical Quarterly

    Google Scholar 

Dynamics and Aeroelasticity

  • B. M. Brooks. 1981. MOD-0 wind turbine dynamics test correlations. Dynamics Workshop, p. 287.

    Google Scholar 

  • C. Chamis and T.L. Sullivan. 1976. Free vibrations of the ERDA-NASA 100 kW wind turbine. NASA TMX-71879.

    Google Scholar 

  • A. W. Cherritt and J. A. Gaidelis. 1975 (June). 100-kW metal wind turbine blade basic data, loads and stress analysis. NASA CR-134956.

    Google Scholar 

  • A.G. Davenport. 1966 (April). The treatment of wind loading on tall buildings.Proceedings of a Symposium on Tall BuildingsSouthampton.

    Google Scholar 

  • H.W. Försching. 1974. Grundlagen der Aeroelastik. Berlin, Heidelberg, and New York: Springer Verlag.

    Google Scholar 

  • P. Friedmann. 1980. Aeroelastic stability and response analysis of large horizontal-axis wind turbines. J. Industrial Aerodynamics5:373–401.

    Google Scholar 

  • P. Friedmann. 1977a. Influence of modeling and blade parameters on the aeroelastic stability of a canti- levered rotor. AIAA Journal15 (No. 2): 149–158.

    Google Scholar 

  • P. Friedmann. 1977b. Recent developments in rotary- wing aeroelasticity. Journal of Aircraft14 (No. 11): 1027–1041.

    Google Scholar 

  • P. Friedmann. 1976. Aeroelastic modeling of large wind turbines. Journal of the American Helicopter Society. 17–27.

    Google Scholar 

  • P. Friedmann and C. Yuan. 1977 (July). Effect of modified aerodynamic strip theories on rotor blade aeroelastic stability. AIAA Journal15 (No. 7): 932–940.

    Google Scholar 

  • V. Giurgiutiu. 1977. Vibrations and dynamic stability of rotor blades. Ph.D. Thesis, Department of Aeronautics, Imperial College of Science and Technology, University of London.

    Google Scholar 

  • J.C. Glasgow and R.D. Corrigan. 1982. MOD-0 passive yaw test results. PIR No. 1%, NASA Lewis Research Center Wind Energy Project Office. Cleveland, Oh, June 30, 1982.

    Google Scholar 

  • D.H. Hodges and E.H. Dowell. 1974 (Dec.). Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades. NASA TN D-7818.

    Google Scholar 

  • D.H. Hodges and R.A. Ormiston. 1977. Stability of hingeless rotor blades in hover with pitch-link flexibility. AIAA Journal15 (No. 4):476–82.

    Google Scholar 

  • J.A. Hoffman. 1977 (Feb.). Coupled dynamics analysis of wind energy systems. NASA CR-135152.

    Google Scholar 

  • R.A. Johnston and S.J. Cessarino. 1976 (Jan). Aeroelastic rotor instability analysis. USAMRDL-TR-75- 40.

    Google Scholar 

  • F. Kiessling. 1977. Aeroelastische Probleme bei Windenergiekonvertern. Tagungsbericht Energie vom Wind. Deutsche Gesellschaft für Sonnenenergie 4. Tagung, 7/8. Juni 1977, Bremen.

    Google Scholar 

  • S. B. R. Kottapalli; P. Friedmann; and A. Rosen. 1978. Aeroelastic stability and response of horizontal axis wind turbine blades. Presented at the Second International Symposium on Wind Energy Systems. Amsterdam, Netherlands; October 3–5, 1978.

    Google Scholar 

  • B. S. Linscott; J. Glasgow; W.D. Anderson; and R.E. Donham. 1977. Experimental data and theoretical analysis of an operating 100 k W wind turbine. Presented at the Wind Energy Workshop. Washington, D.C.; Sept. 1977.

    Google Scholar 

  • R. A. Ormiston. 1975. Dynamic response of wind turbine rotor systems. AHS Preprint S-993. Presented at the 31st Annual National Forum of the American Helicopter Society. Washington, D.C.; 1975.

    Google Scholar 

  • R.A. Ormiston. 1973 (Dec). Rotor dynamic consideration for large wind power generator systems. Wind Energy Conversion Systems Workshop ProceedingsNational Science Foundation, NSF/RA/ W-73–006.

    Google Scholar 

  • R.A. Ormiston and D.H. Hodges. 1972. Linear flap-lag dynamics of hingeless helicopter rotor blades in hover. Journal of the American Helicopter Society17 (No. 2):2–14.

    Google Scholar 

  • C. P. Patrickson and P. Friedmann. 1976 (Dec). A study of the coupled lateral and torsional response of tall buildings to wind loadings. University of California, Los Angeles, School of Engineering and Applied Science Report, UCLA-ENG-76126.

    Google Scholar 

  • D. A. Spera. 1977. Comparison of computer codes for calculating dynamic loads in wind turbines. Presented at the Wind Energy Workshop. Washington, D.C.; Sept. 1977.

    Google Scholar 

  • D.A. Spera and D.C. Janetzke. 1977 (July). Effects of rotor location, coning, and tilt on critical loads in large wind turbines. Prepared for Wind Technology Journal.

    Google Scholar 

  • D.A. Spera; D.C. Janetzke; and T.R. Richards. 1977 (Aug). Dynamic blade loading in the ERDA/NASA 100 kW and 200 kW wind turbines. NASA TMX- 73711.

    Google Scholar 

  • T. Sullivan. 1981. A review of resonance response in large, horizontal axis wind turbines. Wind Turbine Dynamics, Proceedings of a Workshop. Sponsored by Department of Energy and NASA. Cleveland, Oh; Feb. 24- 26, 1981. DOE PubUcation CONE 810226, p. 237.

    Google Scholar 

  • R.W. Thresher. 1981. Structural dynamic analysis of wind turbine systems. WWVVol. 3:61.

    Google Scholar 

  • A.J. Vollan. 1982. Aeroelastic stability and dynamic response for wind energy converters fourth int. symp. on wind energy systems. Stockholm; Sept. 1982.

    Google Scholar 

  • A.J. Vollan. 1978. The aeroelastic behavior of large Darrieus-type wind energy converters derived from the behavior of 5,5 M rotor. Second International Symposium on Wind Energy Systems. 1978 Amsterdam; Oct. 3–6. P. C5–67-88.

    Google Scholar 

Economic Aspects

  • T. S. Dillon et al. 1980 (Jan.). Stochastic optimization and modelling of large hydrothermal systems for long-term regulation.

    Google Scholar 

  • L.L. Garver. 1966 (Aug). Effective load carrying capability of generating units. IEEE Trans, on Pow. Appar. & SystVol. PAS-85 (No. 8).

    Google Scholar 

  • A guide to financial assistance for wind energy. CEC P500–81-014.

    Google Scholar 

  • P. H. Jensen. 1982 (Feb). En Vindmölles Privatö- konomii. Risö-M-2335.

    Google Scholar 

  • J.I. Lerner. 1982. Assessment of large scale wind system technology and prospects for commercial application. Workshop on the Federal Role in the Commercialization of Large Scale Windmill Technology. Sponsored by National Science Foundation. Washington, D.C.; Sept. 25- 26, 1980. (Available from NTIS)

    Google Scholar 

  • W.D. Marsh. 1979 (Jan.). Requirements assessment of wind power plants in electric utility systems. EPRI-ER-978.

    Google Scholar 

  • B. Martin and M. Diesendorf. 1980. The capacity credit of wind power: a numerical model. Proc. Third International Symposium on Wind Energy Systems.

    Google Scholar 

  • J. P. Molly. 1977. Nutzungs- und Speicherprobleme bei Windkraftanlagen. Vortrag: Energie-politisches Forum der Landesregierung Baden-Württemberg und der Universität Stuttgart. Stuttgart; May 9–12, 1977.

    Google Scholar 

  • J. P. Molly. Möglichkeiten zur bedarfsorientierten Abgabe der Windenergie. Tagungsbericht Energie vom Wind. DGS-Tagung. Bremen; June 7–8, 1977.

    Google Scholar 

  • A. P. Rockingham. 1979. A probabilistic simulation model for the calculation of the value of wind energy to electric utilities. Proc. 1st BWEA Wind Energy Workshop. April, 1979. London: Multi-Science Publ. Co. Ltd.

    Google Scholar 

  • H. Selzer. 1981. Wind energy on its way to commercialization. Int. Coll. on Wind Energy. Brighton; Aug. 1981.

    Google Scholar 

  • W.N. Sullivan. 1979 (Aug). Economic analysis of Darrieus vertical axis wind turbine systems for the generation of utility grid electrical power. Vol. 2 the economic optimization model. SAND78- 0%2.

    Google Scholar 

  • R.L. Sullivan. 1977. Power system planning. New York: McGraw-Hill.

    Google Scholar 

  • M. Timm. 1978. Wirtschaftliche Windenergienutzung im Verbund mit herkömmlichen Kraftwerken. Statusreport Windenergie. Oct 23–24, 1978. Jülich.

    Google Scholar 

  • W. Weber. 1977 (June). Einflussfaktoren der Kostenanalyse von Windenergiekonvertem mit horizontaler Achse. Tagungsbericht Energie vom Wind der DGS. Bremen, June 7–8, 1977.

    Google Scholar 

  • G.E. Whittle et al. 1980. A simulation model of an electricity generating system incorporating wind turbine plant. Proc. Third International Symposium on Wind Energy Systems. Copenhagen, Denmark; Aug. 1980. BHRA Fluid Engineering, Cranfield, Bedford, England, p. 545.

    Google Scholar 

Environmental Effects

  • J.F. Balombin. 1980. An exploratory survey of noise levels associated with a 100 kW wind turbine. NASA TM-81486. Lewis Research Center. Cleveland, Ohio.

    Google Scholar 

  • H.D. Carden and W.H. Mayes. 1970. Measured vibration response characteristics of four residential structures excited by mechanical and acoustic loadings. NASA TN D-5776. Langley Research Center. Hampton.

    Google Scholar 

  • L.E. Ericsson and J.P. Reding. 1970. Unsteady airfoil stall review and extension. Proc. AIAA Aerospace Sei. Meeting. AIAA Paper No. 70–77. New York.

    Google Scholar 

  • H. Fujita and L.S.G. Kovasznay. 1974. Unsteady lift and radiated sound from a wake cutting airfoil. AIAA Journ12:1216–1221.

    Google Scholar 

  • W.E. Howell. 1978. Environmental impact of large windpower farmsDenver: U.S. Bureau of Reclamation.

    Google Scholar 

  • G.F. Homicz and A.R. George. 1974. Broadband and discrete radiation from subsonic rotors. Journal of Sound & Vibration32(2): 151–177.

    Google Scholar 

  • N. D. Kelley. 1981. Noise generation by large wind turbines. Wind Energy Technology Conference. Kansas City; March 1981.

    Google Scholar 

  • R. Martinez; S.E. Widnall; and W.L. Harris. 1981. HAWT Noise. Proceedings of 2nd DOE I NASA Wind Turbine Dynamics Workshop. Feb., 1981.

    Google Scholar 

  • S. E. Rogers et al. 1978. Wind energy conversion—environmental effects assessment. Third Wind Energy WorkshopVol. I. CONF-770921 /1: 402–406. May 1978.

    Google Scholar 

  • S. E. Rogers et al. 1976 (Aug). Evaluation of the potential environmental effects of wind energy system developmentInterim Final Report, ERDA/NSF/07378–75 /1. Columbus: Battelle Columbus Laboratories. Available NTIS.

    Google Scholar 

  • T.B.A. Senior et al. 1977 (Feb). TV and FM interference by windmills. Final Report, COO-2846–76-1. Ann Arbor: Radiation Laboratory, Michigan University.

    Google Scholar 

  • Solar program assessment: environmental factors, wind energy conversion1977 (Mar.). ERDA 77–47/6Washington: Energy Research and Development Administration.

    Google Scholar 

  • S.E. Wright. 1969. Sound radiation from a lifting rotor generated by asymmetric disk loading. Journal of Sound and Vibration9(2):223–240.

    Google Scholar 

Loads

  • A.G. Davenport. 1964. Note on the distribution of the largest value of a random function with application to gust loading. Proc. Inst, of Civil Engineers28:187–190.

    Google Scholar 

  • A.G. Davenport. 1961. The application of statistical concepts to the wind loading of structures. Proc. Inst, of Civil Engineers19:449–72.

    Google Scholar 

  • K.R.V. Kaza; D.C. Janetzke; T.L. Sullivan. 1979. Evaluation of MOSTAS computer code for predicting dynamic loads in a two-bladed wind turbine. AIAA Paper 79–0733. Proc. 20th Structures, Structural Dynamics and Materials Conference. St. Louis, Mo.; April 1979, pp. 53–63.

    Google Scholar 

  • A. Miller and R.L. Simon. 1980 (Sept). Wind resource potential in California. San Jose State University, CEC Consultant Report. P500–80-052.

    Google Scholar 

  • G. Tömkvist. 1980. Basic design recommendations for wind energy converters. Saab-Scania report FKL- V-80.9. Linköping, Sweden.

    Google Scholar 

  • D.A. Spera. 1977 (Sept.). Comparison of computer codes for calculating dynamic loads in wind turbines. NASA TM-73773.

    Google Scholar 

Performance and Aerodynamics

  • R.E. Akins. 1978. Performance evaluation of wind energy conversion systems using the method of bins—current status. SAND77–1375. Albuquerque, N.M.: Sandia Laboratories.

    Google Scholar 

  • O. De Vries. 1979. Wind tunnel tests on a model of a two-bladed horizontal-axis wind turbine and evaluation of an aerodynamic performance calculation method. NLR TR 79071 L.

    Google Scholar 

  • O. De Vries. 1978. The aerodynamic performance of a horizontal-axis wind turbine in a stationary parallel flow. NLR TR 78084 L.

    Google Scholar 

  • B.F. Habron et al. 1980. Wind-turbine power improvement with modern airfoil sections and multiple- speed generators. AIAA/SERI Wind Energy Conference. Boulder, Colo.; April 9–11, 1980. AIAA Paper No. 0633.

    Google Scholar 

  • P.B.S. Lissaman et al. 1982 (June). Numeric modeling sensitivity analysis of the performance of wind turbine arrays. Department of Energy/Pacific Northwest Laboratory Contractor Report. D. E. 82027570, PNL-4183.

    Google Scholar 

  • L. Viterna and D. Janetzke. 1981. Theoretical and experimental power from large, horizontal—axis wind turbines. Proceedings of the Fifth Biennial Wind Energy Conference and Workshop (WWV). Vol. 2. Sponsored by Department of Energy. Washington, D.C.; October 5–7, 1981. SERI/CP-635–1340, CONNF-811043, p. 265.

    Google Scholar 

  • R. E. Wilson and P.B.S. Lissaman. 1974 (July). Applied aerodynamics of wind power machines. Oregon State University.

    Google Scholar 

Programs

  • The Danish wind power program. 1981. Starre elproducerende vindkraftanlaeg(in Danish). Lyng- by, Denmark: Polyteknisk Boghandel og Forlag.

    Google Scholar 

  • M. Dubey; U. Coty; D. Bain; R. Donham; L. Vaughn; and R. Dickinson. 1980 (June). Impact of large wind energy systems in California. Solar Energy Conversion Systems, Inc., CEC Contractor Report. P500–80-031.

    Google Scholar 

  • J. Lerner. 1978 (July). Wind-electric power: a renewable resource for California. CEC staff report. P500–78-025.

    Google Scholar 

  • R. Windheim and R. Neumann. 1979. Wind energy R&D program of the Federal Republic of Germany and current wind energy projects. 4th Biennial Conference and Workshop ond Wind Energy Conversion Systems. Washington; Oct. 29–31, 79.

    Google Scholar 

Safety

  • S. Eggwertz. 1980. Study of WECs farm area and WECs safety limit requirements. Minutes from the Expert Meeting JEA R&D WECS. Annex I Sub Task Al. FFA Technical Note Hu-2218. Stockholm.

    Google Scholar 

  • S. Eggwertz et al. 1981. Safety of wind energy conversion systems with horizontal axis. Aeron. Research Inst, of Sweden. FFA, TN HU-2229. Stockholm.

    Google Scholar 

  • S. Eggwertz; I. Carlsson; A. Gustavsson; C. Lundemo; B. Mongomerie; and S-E. Thor. Safety of wind energy conversion systems (WECS), preliminary study. Aeronautical Research Institute of Sweden, Report HU-2126. Stockholm.

    Google Scholar 

  • Implementing agreement for co-operation in the development of large scale wind energy conversion systems. 1981. Fifth Meeting of Experts—Environmental and Safety AspectsJül-Spez-100, Febr. 1981.

    Google Scholar 

  • Implementing agreement. 1981. Sixth Meeting of Experts—Reliability and MaintenanceJül-Spez- 129, Sept. 1981.

    Google Scholar 

Wind Structure

  • H.C. Chien; V.A. Sandbom; R.N. Meroney; and R.J.B. Bouwmeester. 1978 (Mar). Preliminary measurements of flow over model, three- dimensional hills. Colorado State University, Research Memorandum 24.

    Google Scholar 

  • W. Frost; B.H. Long; and R.E. Turner. 1978. Engineering handbook on the atmospheric environmental guidelines for use in wind turbine generator development. NASA Technical Paper 1359.

    Google Scholar 

  • W. Frost and D.K. Nowak. 1976 (Sept) Technology development for assessment of small-scale terrain effects on available wind energy. Monthly report for DOE Contract E(40-l)-5220.

    Google Scholar 

  • W. Frost and A.M. Shahabi. 1977. A field study of wind over a simulated block building. NASA CR 2804.

    Google Scholar 

  • W. Frost and C.F. Shieh. 1979. Guidelines for siting WECS relative to small-scale terrain features. FWG Associates, Inc., Tullahoma, Tenn. DOE Contract Report RLO/2443–78/1.

    Google Scholar 

  • H. Gustavsson and M. Linde. 1979. The gust as a coherent structure in the turbulent boundary layer. FFA TN AU-1499 Part 5.

    Google Scholar 

  • W.E. Holley and R.W. Thresher. Response of wind turbines to atmospheric turbulence. WWV. Vol. 2:281.

    Google Scholar 

  • S.J. KUne; W.C. Reynolds; F.A. Schraub; and P.W. Runstadler. 1967. The structure of turbulent boundary layers. J. Fluid. Mech30:741.

    Google Scholar 

  • R.N. Meroney; A.J. Bowen; D. Lindley; and J. Pearce. Wind characteristics over complex ter- reun: laboratory simulation and field measurements at Rakaia Gorge, New Zealand. Colorado State University, Colorado. Contract Report RLO/ 2438–77/2.

    Google Scholar 

  • R.N. Meroney; V.A. Sandborn; R.J.B. Bouwmeester; H.C. Chien; and M. Rider. 1978. Sites for wind power installations: physical modeling of the influence of hills, ridges and complex terrain on wind speed and turbulence. Colorado State University, Colorado, Contract Report RLO/2438–77/3.

    Google Scholar 

  • R.N. Meroney; V.A. Sandborn; R.J.B. Bouwmeester; and M.A. Rider. 1977. Sites for wind power installations: wind tunnel simulation of the influence of two- dimensional ridges on wind speed and turbulence. Colorado State University, Contract Report RLO/2438–77/1.

    Google Scholar 

  • E.L. Petersen et al. 1981 (Jan). Windatlas for Denmark. Ris0-R-428.

    Google Scholar 

  • D.C. Powell and J.R. Connell. 1980. Definition of gust model concepts and review of gust models. Battelle Pacific Northwest Laboratory, PNL-3138.

    Google Scholar 

  • J.K. Raine and D.C. Stevenson. 1977. Wind protection by model fences in a simulated atmospheric boundary layer. Journal of Industrial Aerodynamics2:159–180.

    Google Scholar 

  • C.F. Shieh and W. Frost. 1979. Application of a numerical model to WECS siting relative to two- dimensional terrain features. Fifth International Conference on Wind Engineering. Fort Collins, Colo.; July 8–14, 1979.

    Google Scholar 

  • C.F. Shieh; W. Frost; and J. Bitte. 1977. Neutrally stable atmospheric flow over a two-dimensional rec- tagular block. NASA CR 2926.

    Google Scholar 

  • R. L. Simon. 1981. Potential errors in using one anemometer to characterize the wind power over an entire rotor disc. Large Horizontal-Axis Wind Turbine Conference. Sponsored by DOE and NASA. Cleveland, Ohio; July, 1981.

    Google Scholar 

  • A.S. Smedman. 1980. Turbulensförhällanden i Kalkugnen. Meteorologiska Inst. Uppsala Univ.

    Google Scholar 

  • H.G.C. Woo; J.A. Peterka; J.E. Cermak. 1977. Wind- tunnel measurements in the wakes of structures. NASA CR 2806.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 American Solar Energy Society, Inc.

About this chapter

Cite this chapter

Selzer, H. (1983). Large Wind Turbine Systems Seen from the European Viewpoint. In: Böer, K.W., Duffie, J.A. (eds) Advances in Solar Energy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8992-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8992-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8994-1

  • Online ISBN: 978-1-4684-8992-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics